

ZBL-Y1000 A 智能张拉应力检测仪 使用说明书

目 录

本说	明书	中日	的约定IV
第1	章		概述1
1.1		简介	·1
1.2	2	主要	功能1
1.3	;	主要	技术指标2
1.4	-	注意	事项4
	1.4	.1	使用说明书4
	1.4	.2	工作环境要求:4
	1.4	.3	存储环境要求5
	1.4	.4	其他要求5
1.5	5	仪器	的维护及保养
	1.5	.1	电源6
	1.5	5.2	充电7
	1.5	.3	充电电池7
	1.5	.4	清洁8
1.6	5	责任	

<

I

	1.7	,	质保	₹	9
第	2	章	Ī	仪器描述	10
	2.1		仪器	<u> </u>	.10
		2.	1.1	主机	.10
		2.	1.2	前卡式千斤顶	.13
		2.	1.3	便携式数控油泵	.14
		2.	1.4	配件	.16
	2.2		测记	【原理	.16
第	3	章	Ē	智能张拉应力检测软件	18
	3.1		软件	简介	.18
	3.2	,	软件	功能介绍	.19
		3.2	2.1	数据管理	.19
		3.2	2.2	系统设置	.22
		3.2	2.3	参数设置	.39
		3.2	2.4	张拉检测	.44
	3.3		软件	的升级	.49
第	4	章	Ī	快速操作指南	51
	4.1		测记	前准备	.51
		4.	1.1	系统连接	.51
		4.	1.2	千斤顶放入钢绞线上	.53

4.1.	3 系统及参数设置	54
4.1.	4 预紧	55
4.2	胀拉检测	55
4.3 I	观场检测时的注意事项	56
4.3.	1 合理设置应力设计值	56
第5章	计量与检定	58
5.1 }	由压传感器及千斤顶的校准与计量	58
5.1.	1 计量	58
5.1.	2 计量复测	60
5.2	立移传感器的校准与计量	61
5.2.	1 校准	61
5.2.	2 计量与复测	63
附录1	功能菜单及面板按钮一览表	63
附录 2	参考资料	67

本说明书中的约定

- 灰色背景、带黑色方框的文字表示界面上的一个按钮,如:
 确定钮。
- 2. 仪器面板上的按键均用【】表示,如:【存储】键。
- 白色背景、带黑色方框的文字表示 Windows 软件菜单命
 令,其中"→"表示菜单级间的分割符,如文件→打开表示
 文件菜单下的打开菜单项命令。
- 灰色背景、不带方框的文字表示屏幕上选项或菜单名称。如
 选择参数设置中的构件选项。
- 5. 标志 为需要特别注意的问题。
- 除了本说明书中介绍的内容之外,用户在使用仪器的过程
 中,会自动显示一些提示信息,请按提示信息操作。
- 本说明书中的软件界面及照片仅用作示意,随着软件升级和
 产品的不断改进可能会发生变化,恕不另行通知。

1

第1章 概述

1.1 简介

预应力是桥梁施工的一个重要环节,同时也是桥梁安全的保障。然而由于缺乏有效的检测手段,在传统的预应力施工结束后,无法检测其施工的准确性与有效性。ZBL-Y1000智能张拉应力检测仪适用于预应力梁板施工的有效预应力的检测,它将为您提供便捷、精确的有效预应力检测解决方案。

图 1.1 ZBL-Y1000 A 设备

1.2 主要功能

1) 锚下有效预应力的检测。

- 2) 同束不均匀度的检测。
- 3) 锚圈口摩阻损失的测试。

1.3 主要技术指标

表 1.1 主要技术指标

	项目	指标
	供电方式	内置锂电池(额定能量 66.6Wh)
	工作时间	>8小时
	主机重量	7kg (含内置锂离子电池)
	整机体积	480mm×390mm×160mm
	显示器	工业级 10.4 英寸、高亮度、真彩色液晶显
		示器
主	存储器	3.2GB
机	操作系统	Windows CE
	操作方式	触摸屏
	USB 🗆	提供两个 USB 接口。一个用于 Update 接
		口:通过 USB 对内部固件升级(客户一般
		不会用到);另一个是 USB,通过 U 盘可将
		数据导出,也可通过该口进行机内软件升
		级。
便携	重量	30kg
式数	尺寸	230mmx360mmx415mm

控油	推荐液压油标	南方用 46 号液压油每年换一次,东北地区
泵	号	夏季用 46 号,冬季用 32 号
	工作电压	直流 24V±10%
	认证	原装进口、重工业 CE 认证
油 压	防护	100V/m 电磁干扰保护
传 感	工作温度	-30-100℃
器	综合精度	±0.25%SPAN
	测试压力范围	<60MPa

续表 1.1 主要技术指标

	项目	指标
	公称张拉力	250kN
	公称油压	52MPa
	张拉活塞面积	4.77X10-3
前卡式	回程活塞面积	1.335X10-3
限位千	穿心孔直径	¢ 19
斤顶	张拉最大行程	110mm
	外形尺寸	φ114x410mm
	相对线性精度	0.05%FS
	工作温度	-30-100℃
位移传	行程	120mm
	工作温度	-40°C ~ +120°C
hđ آلارير	相对线性精度	±0.1%FS

续表 1.2 主要技术指标

	项目	指标
外置锂	外形尺寸	185*170*285mm
电池(液	额定充电电压	Input: AC220V±10% output:24V
压用,	额定电池容量	24V/60Ah
选配)		

1.4 注意事项

1.4.1 使用说明书

为了更好地使用本检测仪,请您在使用仪器前仔细阅读使用 说明书。

1.4.2 工作环境要求:

环境温度:0℃~40℃

相对湿度: <90%RH

不得长时间阳光直射

4

防腐蚀:在潮湿、灰尘、腐蚀性气体环境中使用时,应采取 必要的防护措施。

1.4.3 存储环境要求

环境温度: -20℃~+60℃

相对湿度: <90%RH

不用时请将仪器放在包装箱中,在通风、阴凉、干燥环境下 保存,不得长时间阳光直射。

若长期不使用,应定期给主机通电开机试运行(<u>以免数控液</u> <u>压设备中的变频控制器的部分大电容因长期搁置而失效</u>)。锂电 池长期不使用也应适当充电。

1.4.4 其他要求

- 1) 仪器内有精密器件, 应轻拿轻放;
- 2) 工控主机显示屏易碎,请勿尖物碰撞,应防水防热。
- 电池充电时应放在通风环境下,工作时注意通风,防暴
 晒,防止电池高温爆炸;
- 4) 使用设备前应先检查液压油存量,油泵液位不能低于14,液位不足时应及时补充液压油。
- 5) 设备通电前应先将设备之间的各种连接线安装好,确认 主机与千斤顶、主机与油泵、油泵与千斤顶之间的连接

线连接稳定后将油泵供电线插到外部 220V 供电或者锂 电池上。

- T程测试时,测试者应注意仪器及其附属物坠落伤人, 或摔坏仪器;相关人员还应注意自身安全,进入工程现 场应配戴安全帽及其它防护用品。
- 7) 液压油:南方用 46 号液压油每年换一次,北方较冷地 区边夏季用 46 号,冬季用 32 号液压油
- 1.5 仪器的维护及保养

1.5.1 电源

主机采用内置专用可充电锂电池进行供电,使用时请注意电量指示,如果电量不足时,则应尽快采用专用充电器对本仪器供电,否则可能会造成突然断电导致测试数据丢失甚至损毁系统; 如用交流电源供电,则应确保外接电源为AC220±10%V。禁止使用其他电池、电源为本仪器供电。

液压供电可用标配电源模块供电,也可用选配的锂 电池组供电(指定厂家、型号)。锂电池组充电时间不能过 长,建议在室外充电,一旦充满立刻停止充电,以防止电池 长期使用老化后易燃等问题。

1.5.2 充电

主机:用本仪器配套的 AC-DC 电源模块为主机内部电池充 电时,只需将电源插头端接到 AC220±10%V 的插座中,直流输 出端接到仪器主机的电源插口中即可。当仪器主机面板上的充电 指示为红色,表示对仪器主机内置电池快速充电;当指示灯由红 色变成绿色时,表示内置电池将要充满;当指示灯熄灭时,则表 示电池已经充满。

從○ 注意:为了保证完全充满,请保持连续充电 6~8 小时,同时不要在超过 30℃的环境下对仪器充电。

仪器主机长期不用,充电电池会自然放电,导致电量减少, 使用前应再次充电。充电过程中仪器和 AC-DC 电源会有一定发 热,属正常现象,应保持仪器、AC-DC 电源或充电器通风良 好,便于散热。

《》《》注意:不得使用其它电源适配器对仪器主机充电,否则有可能对仪器主机造成破坏。

1.5.3 充电电池

充电电池的寿命为充放电 500 次左右,接近电池充放电寿 命时,如果发现电池工作不正常(根本充不上电、充不满或充满 之后使用时间很短),则很可能是充电电池已损坏或寿命已到,

应与我公司联系,更换新的电池。禁止将电池短路或靠近高温热 源.

1.5.4 清洁

每次使用完本仪器后,应该对主机、传感器等进行话当清 洁,以防止水、泥等进入接插件或仪器,从而导致仪器的性能下 隆或损坏。

₩<>>注意: 请勿将仪器及配件放入水中或用湿布擦洗!

注意: 请勿用有机溶剂擦洗仪器及配件!

请用干净柔软的干布擦拭主机。

请用干净柔软的毛刷清理插座。

1.6 责任

本仪器为精密检测仪器,当用户有以下行为之一或其它人为 破坏时,本公司不承担相关责任。

- (1) 讳反上述工作环境要求或存储环境要求。
- (2) 非正常操作。
- (3) 在未经允许的情况下擅自打开机壳,拆卸任何零部 件。
- (4) 人为或意外事故造成仪器严重损坏。

1.7 质保

- (1) 主机视为电子产品,质保规则等同于其它电子类产
- 品(详见质保单)
- (2)液压设备中,前卡式千斤顶内的卡片、密封圈、限位器以及所有电线电缆等属于耗材类,质保三个月。

第2章 仪器描述

2.1 仪器组成

ZBL-Y1000 A 智能张拉应力检测仪主要包括主机、便携式 数控油泵、前卡式千斤顶、外置锂电池(选配)。

2.1.1 主机

2.1.1.1 液晶屏

安装在仪器上面板,紧贴触摸屏。用于显示操作界面及检测 数据等。

2.1.1.2 触摸屏

用于软件的操作、交互。

2.1.1.3 电源开关

用于打开或强制关闭仪器电源。关机时,尽量不要使用电源 开关去强制关机,最好使用软件界面上的按钮关机。

2.1.1.4 充电指示灯

指示充电状态,刚接上电源适配器时该指示灯为红色,灯的 颜色变为绿色时表明进入小电流充电状态,灯熄灭时,则表示电 池已经充满。

2.1.1.5 USB 接口 1 (Update)

该接口名为: Update,用于对主机内部硬件的驱动进行更新,即固件更新,并不是对操作软件的更新。

2.1.1.6 USB 接口 2

真正的标准 USB 接口,可以将 U 盘插入该口,将仪器内部

的检测数据拷贝至 U 盘。也可通过该口进行仪器内部测试软件的 升级更新工作。

2.1.1.7 位移传感器接口

用于连接千斤顶上安装的位移传感器。

2.1.1.8 油泵控制接口

用于连接数控液压泵内部安装的油压传感器和换向阀,控制 油泵出油方向,间接控制千斤顶的出顶和回顶。

2.1.1.9 压力传感器接口

用于连接压力传感器。

₩<>>>注意:压力传感器为选配。

2.1.2 前卡式千斤顶

图 2.2 千斤顶示意图

2.1.2.1 位移传感器接口

千斤顶的顶部安装有位移传感器,用于记录活塞顶出的位移 量。在测试前,用专用信号线将此接口与主机上的相应接口相 连。

2.1.2.2 出顶口与回顶口

设备连接时,使用自带的油管将千斤顶活塞的出顶口与油泵 出顶口连接,千斤顶活塞的回顶口与油泵回顶口连接。

2.1.3 便携式数控油泵

图 2.3 数控油泵

2.1.3.1 电源接口

通过随机赠送的电源适配器给油泵进行供电,安装时先将电源适配器航插一端接在油泵电源接口上,然后将电源适配器三相插头一端接在220V±10%的外部电源或者外置锂电池上。

2.1.3.2 油泵控制接口

用来控制油泵正常运转的接口,测试之前,通过专用信号线 与主机的相应接口连接。

2.1.3.3 电源指示灯

接通电源后,此指示灯常亮。

2.1.3.4 工作指示灯

当油泵工作灯,此灯亮起

2.1.3.5 急停按钮

当遇到紧急情况时,按下此钮可使油泵停止工作,且顶控制 按钮无效。

2.1.3.6 进油按钮

手动控制油泵出顶使用。

2.1.3.7 回油按钮

手动控制油泵回顶使用。

2.1.3.8 油压表

当油泵工作时,通过油压表直观显示油路中压力的大小。

2.1.3.9 出顶口与回顶口

在测试前,通过油管将出顶口与千斤顶活塞出顶口相连,回 顶口与千斤顶活塞回程的回顶口相连。

2.1.3.10 液位计

液位计是用来显示油泵中储存油量的多少。建议加油时液位 保持在 14-15 之间即可。

《《《》注意:在手动控制油泵开、关时,切不要让千斤顶超 负载工作,也就是说,在达到活塞伸长极限之前以及活塞刚好回 到顶的底部之前必须马上停止油泵。

2.1.4 配件

仪器有专用配件箱,放置总电源线、主机电源适配器、位移 传感器线缆、油压传感器线缆、U盘等,详见装箱单。

其它配件: 与千斤顶配套的还有限位器及延长筒等。

2.2 测试原理

图 2.4 测试原理图

对锚索外露段施加与锚下有效预应力方向相反的拉力,采集 并记录拉伸位移数值和拉力数值,以拉伸位移为横坐标,拉力为 纵坐标建立曲线。则曲线上斜率突变点(或称为拐点)处即为关 注点,如图 2.5 所示。

当锚头处的反拉力一直加大到足够克服锚口处的摩擦阻力与 锚下应力之和时(即图中的 A 值),继续加压的瞬间,锚头的应 力值会突然下降,此时锚口内外基本相等,图中 B 点视为锚下有 效应力值。

第3章 智能张拉应力检测软件

3.1 软件简介

本检测软件运行在 WINDOWS CE6.0 系统下,与大家熟悉的 Windows 操作风格一致,通过触摸屏进行操控,人机界面友好、操作简单。

图 3.1 主界面

仪器启动后自动进入张拉力检测软件主界面,如图 3.1 所 示,该界面主要由以下六部分组成:标题栏、钢束选项卡、采样 数据区、曲线区、系统菜单、张拉控制面板。

1) 标题栏:显示梁及预应力孔道编号、仪器电量等信息;

- 2) 钢束选项卡:用于切换、指示当前进行张拉的钢束;
- 3) 采样数据区: 实时显示当前采样数据;
- 4) 张拉控制面板:显示张拉控制操作按钮;
- 5) 曲线区: 实时显示检测过程中的曲线;
- 6) 系统菜单:显示系统菜单功能按钮;

3.2 软件功能介绍

本软件主要有数据管理、参数设置、数据采集、软件升级等 多项功能,在本章将对其进行详细介绍。

3.2.1 数据管理

据管	理							
	工程名称(34)				文件名称(6)	大小(kB)	创建时间	
	0327				test1-7L1	5	2017.04.19-14:29	
	站前路2标2				test1-孔2	6	2017.04.19-14:34	
	站前路2标1				test1-7L3	6	2017.04.19-14:45	
	站前路2标				test1-3L4	5	2017.04.19-15:15	
	0406				test1-孔5	10	2017.04.19-15:20	
	0409				test1-7L6	14	2017.04.19-15:36	
	100							
	1所							
	0412							
	21q							
	0413							
	20170418							
	20170419		-					
存储	空间						剩多	余:86.74
ŧ	т#	删除	Ę	≩出				退出

图 3.2 数据管理界面

数据管理主要用于查看已测的工程及数据文件,并可选择工 程或文件后复制到 U 盘或进行删除。

在软件主界面点击数据管理钮,则弹出如图 3.2 所示的数据管理界面,界面左半部分为工程列表,右半部分为当前工程中的所有文件列表,界面下部为功能按钮区。

3.2.1.1 操作方法

- 点击工程列表中的某一工程后,在右边显示该工程中所有 的文件;点击文件列表中的某一文件所在行,则选中该文 件。
- 点击列表表头可以排序,不同列的排序方法不同,名称列 按字母排序,时间列按时间先后排序,文件大小列按文件 大小排序,多次点击可切换升序和降序两种排序方式。
- 3) 点击列表表头的第一列,可以勾选所有工程或文件。
- 4) 在工程或文件列表中点击某一工程或文件前面的复选框, 则可以勾选该工程或文件;点击需要选择的工程或文件即 可勾选多个工程或文件。
- 当列表中的内容超过一屏时,会在列表框的右侧出现竖向 滚动条,拖动滚动条则可以翻屏,也可以在列表区域上、 下滑动进行翻屏。

3.2.1.2 打开文件

在文件列表区选中一个文件后点击打开钮,则将所选文件打 开并返回至主界面,显示该文件中存储的数据等。当未选择文件 时,打开钮无效。

3.2.1.3 工程及文件的删除

在测量数据导出并确认没有问题后,即可将仪器内部存储的 测量数据删除,以节约仪器存储空间。

勾选一个或多个工程后点击删除钮,则将所选工程及其中的 所有文件删除;若勾选一个或多个文件后点击删除钮,则将所选 文件删除。当未勾选工程或文件时,删除钮无效。

删除工程或文件之前均会询问"你确实要删除所选工程或文件吗?",按是钮则删除,否钮则不删除。

注意:数据删除后将无法恢复!删除之前应确保待删除的数据已经备份到计算机上。当一个工程下的所有文件均删除后,则自动将该工程删除。

3.2.1.4 数据导出

完成张拉测试后,测试数据存储在仪器中,用户可将测量数 据导出到 U 盘进行后续的分析处理或存档。

勾选一个或多个工程后点击 导出钮,则将所选工程中的所有

文件复制到 U 盘;若勾选一个或多个文件后点击导出钮,则将所选文件复制到 U 盘。当未勾选工程或文件时,导出钮无效。

复制工程或文件时, 会在 U 盘上创建"ZBLData\Y2000" 文件夹, 然后以工程名称创建子文件夹, 然后将此工程中所有文 件或所选文件复制到该子文件夹中。

拷贝文件之前会检查 U 盘是否存在,如不存在,则提示用 户先插上 U 盘后再拷贝。

3.2.1.5 退出

点击退出钮,则退出数据管理,返回至主界面。

3.2.2 系统设置

在开始检测之前需要进行油压传感器、位移传感器、张拉方 法、孔位图、钢束位图、其他信息的设置。

点击主界面上的<mark>系统设置</mark>按钮进入系统设置界面,可以对上 述参数进行设置。

注意:系统设置中的参数不需要每次检测都重新设置,各种传感器的参数如果未重新标定或计量,则可一直使用; 张拉方法、孔位图及钢束位图等参数,则根据实际工程情况进行设置,如果未发生变化,无需重新设置。

3.2.2.1 油压传感器设置

点击油压传感器标签,进入图 3.3 所示界面,选中左侧列表中的传感器后,在右侧显示其各项参数。此外,可以新建、编辑或删除油压传感器。

油压传感器	位移传感器	应力传感器	张拉方法	孔位图	钢束位图	其他
序号	传感器编号	-				_
1	传感器		传感器编号:	传感器		
2	3		量程:	50		MPa
3	5			千斤顶系	数	
4	0324		千斤顶编号:	2		
5	30hz		○ 原始系数			T/MPa
6	40hz		○直径			mm
7	30hz-new		O 回归方程(F	= K * P + f) 🕻	●回归方程(P =	K * F + f2
8	30hz-new1	T	K = 0.206	313	f = -0.21002	27
-Mirzh-	1è1	#	副经			- आग्र

图 3.3 油压传感器设置

1. 新建

点击新建按钮,弹出图 3.4 所示对话框,可以输入传感器编号、量程、千斤顶编号、原始系数、直径,选择回归方程类型, 设置回归系数。设置完后点击保存钮,则保存该传感器参数;点 击取消钮,则设置参数无效。

新建->油压传感器	
传感器编号:	
量程:	MPa
千斤顶系数	
千斤顶编号:	
○ 原始系数	T/MPa
○ 直径	mm
● 回归方程 (F = K * P + f) ○ 回归方程 (P = K K = f =	*F + f)
保存 取消	

图 3.4 新建油压传感器

2. 编辑

24

在传感器列表中选中当前未使用的某传感器后,点击编辑按 钮,则弹出提示信息"当前选择的油压传感器是否使用过,请谨 慎编辑",点击取消按钮则取消编辑操作;点击确定按钮,则弹 出图 3.5 所示对话框,除了传感器编号不可编辑外,其他参数均 可编辑。修改完后点击保存钮,则保存修改后参数;点击取消 钮,则修改参数无效。

编辑->油压传	<u>39</u>	
传感器编号:	传感器	
量程:	60	MPa
	千斤顶系数	
千斤顶编号:	2	
○ 原始系数		T/MPa
○ 直径		mm
〇回归方程(1 K = 0.20	F = K * P + f)	*F + f)
	保存取消	

图 3.5 编辑油压传感器

《《《》注意:如果所选择的油压传感器正在使用,则无法进行编辑。

3. 删除

在传感器列表中选中当前未使用的某传感器后,点击删除按钮,则弹出提示信息"是否要删除所选择的油压传感器?",点 击取消按钮则不删除;点击确定按钮,则删除所选中的传感器。

《《《》注意:如果所选择的油压传感器正在使用,则无法删除。

3.2.2.2 位移传感器设置

点击位移传感器标签,进入图 3.6 所示界面,选中左侧列表中的传感器后,在右侧显示其各项参数。此外,可以新建、编辑、删除位移传感器,还可进行校准。

系统设置						
油压传感器	位移传感器	应力传感器	张拉方法	孔位图	钢束位图	其他
序号	传感器编号					
1	校准一所		传感器编号:	技准一 所		_
2	1suo		, r			
3	jl 1s		量程:	100		mm
4	zbliao					
5	zbl1					
6	z1					
7	1jiaozhun					
新建	编辑	ŧ 🛛	删除	校准		退出

图 3.6 位移传感器设置

1. 新建

点击新建按钮,弹出图 3.7 所示对话框,可以输入传感器编 号及量程。设置完后点击保存钮,则保存该传感器参数;点击取 消钮,则设置参数无效。

新建->位移传感器				
传感器编号:	[
量程:				mm
	保存		取消	

图 3.7 新建位移传感器

🤎 🖉 说明:标配位移传感器的行程为 120mm。

2. 编辑

在传感器列表中选中当前未使用的某传感器后,点击编辑按钮,则弹出提示信息"当前选择的位移传感器是否使用过,请谨慎编辑",点击取消按钮则取消编辑操作;点击确定按钮,则弹出图 3.8 所示对话框,除了传感器编号不可编辑外,其他参数均可编辑。修改完后点击保存钮,则保存修改后参数;点击取消钮,则修改参数无效。

《》《》注意:如果所选择的位移传感器正在使用,则无 法进行编辑。

编辑->位移传感器			
传感器编号:	校准一所		
量程:	100		mm
	保存	取消	

图 3.8 编辑位移传感器

3. 删除

在传感器列表中选中当前未使用的某传感器后,点击删除按钮,则弹出提示信息"是否要删除所选择的位移传感器?",点击取消按钮则不删除;点击确定按钮,则删除所选中的传感器。

《》《》注意:如果所选择的位移传感器正在使用,则无法删除。

4. 校准

校准功能主要供计量检定机构使用,一般客户不用该功能, 详参第5章。

3.2.2.3 张拉方法设置

点击张拉方法标签,进入图 3.12 所示界面,在左侧列表中选中张拉方法后,在右侧显示其详细参数。此外,可以新建、编 28

辑、删除张拉方法。

53	统设置						
	油压传感器	位移传感器	应力传感器	张拉方法	孔位图	钢束位图	其他
	序号	张拉方法名称	_				
	1	2	3	长拉方法名称:	2		
	2	3ј		级数:	1级	*	
	3	4j			1		
	4	1		级数	张拉力(%)	持荷时间(s	;)
	5	15		1	100	0	
	6	123					
	7	rt					
	8	df	-				

图 3.12 张拉方法设置

1. 新建

点击新建按钮,弹出 3.13 所示对话框,可输入张拉方法名称、级数、张拉力(%)、持荷时间(s)。设置完后点击保存 钮,则保存该张拉方法参数;点击取消钮,则设置参数无效。

Ħ	新建->张拉方法			
张	(拉方法名称 级数	- - 1级	v	
	级数	张拉力(%)	持荷时间(s)	
	1	100	0	
		保存	取消	

图 3.13 新建张拉方法

2. 编辑

在张拉方法列表中选中当前未使用的某张拉方法后,点击编辑按钮,则弹出提示信息"当前选择的张拉方法是否使用过,请谨慎编辑",点击取消按钮则取消编辑操作;点击确定按钮,则 弹出图 3.14 所示对话框,除了张拉方法、级数不可编辑外,其 他参数均可编辑。修改完后点击保存钮,则保存修改后参数;点 击取消钮,则修改参数无效。

4	编辑->张拉方法					
긝	(拉方法名称	2				
	级数	<u>1</u>	\checkmark			
	级数	张拉力(%)	持荷时间(s)			
	1	100	0			
		保存	取消			

图 3.14 编辑张拉方法

3. 删除

在张拉方法列表中选中当前未使用的某张拉方法后,点击删除按钮,则弹出提示信息"是否要删除所选择的张拉方法?", 点击取消按钮则不删除;点击确定按钮,则删除所选中的张拉方法。

《》《》注意:如果所选择的张拉方法正在使用,则无法删除。

3.2.2.4 孔位图设置

点击<mark>孔位图</mark>标签,进入图 3.15 所示界面,点击左侧列表中的孔位图,则在右侧显示对应的参数及示意图。此外,可以新建、编辑、删除孔位图。

③系统设置						
油压传感器	位移传感器	应力传感器	张拉方法	孔位图	钢束位图	其他
序号	孔位图名称					
1	ik		孔位图名称:	ik		
2	4		孔个数:	1个		-
3	e3		梁类型:	Тஜ		v
4	10					_
5	6			\leq		
6	7			0		
7	15					
8	n2.2	-				
新建	4 4	iii	■除			退出

图 3.15 孔位图设置

1. 新建

点击新建按钮,弹出图 3.16 所示对话框,可输入孔位图名称,选择孔个数、梁类型,可按实际构件设置孔位(在孔位图中选中某个孔拖动即可)。设置完后点击保存钮,则保存该孔位图参数;点击取消钮,则设置参数无效。

新建->孔位图		
孔位图名称:		
孔个数:	1个	•
梁类型:	T梁	•
	0	7
	保存	取消

图 3.16 新建孔位图

2. 编辑

在孔位图列表中选中当前未使用的某孔位图后,点击编辑按 钮,则弹出提示信息"当前选择的孔位图是否使用过,请谨慎编 辑",点击取消按钮则取消编辑操作;点击确定按钮,则弹出图 3.17 所示对话框,除了孔位图名称不可编辑外,其他参数均可编 辑。修改完后点击保存钮,则保存修改后参数;点击取消钮,则 修改参数无效。

注意:如果所选择的孔位图正在使用,则无法进行编辑。

编辑->孔位图			
孔位图名称: 五个数:	ik 1个		
梁类型:	T梁	•	
	保存		

图 3.17 编辑孔位图

3. 删除

在孔位图列表中选中当前未使用的某孔位图后,点击删除按钮,则弹出提示信息"是否要删除所选择的孔位图?",点击取 消按钮则不删除;点击确定按钮,则删除所选中的孔位图。

🎉 注意:如果所选择的孔位图正在使用,则无法删除。

3.2.2.5 钢束位图设置

点击钢束位图标签,进入图 3.18 所示界面,点击左侧列表中的钢束位图,则在右侧显示对应的参数及示意图。此外,可以新建、编辑、删除钢束位图。

山江山大道市市	17.15/15/16	レムノリーマ宅計論	JK12/J14	JULER	WALLEI	716
序号	钢束位图名称					
1	5s		钢束位图名称:	5s		
2	16根			C-10		-
3	12		钢束个数:	51R		×
4	N3.4					
5	右2			6		
6	N3					
7	右1					

图 3.18 钢束位图设置

1. 新建

点击新建按钮,弹出图 3.19 所示对话框,可以编辑钢束位 图名称、钢束个数,可以设置钢束的位置(选中钢束后拖动即 可)。设置完后点击保存钮,则保存该钢束位图参数;点击取消 钮,则设置参数无效。

新建->钢束位图	1	
钢束位图名称:		
钢束个数:	1根	•
	0	
	保存	取消

图 3.19 新建钢束位图

2. 编辑

在钢束位图列表中选中当前未使用的某钢束位图后,点击编 辑按钮,则弹出提示信息"当前选择的钢束位图是否使用过,请 谨慎编辑",点击取消按钮则取消编辑操作;点击确定按钮,则 弹出图 3.20 所示对话框,除了钢束位图名称不可编辑外,其他 参数均可编辑。修改完后点击保存钮,则保存修改后参数;点击 取消钮,则修改参数无效。

《 注意:如果所选择的钢束位图正在使用,则无法进行 编辑。

编辑->钢束位图		
钢束位图名称:	5s	
钢束个数:	5根	•
	6	
	保存取	消

图 3.20 编辑钢束位图

3. 删除

在钢束位图列表中选中当前未使用的某钢束位图后,点击删除按钮,则弹出提示信息"是否要删除所选择的钢束位图?", 点击取消按钮则不删除;点击确定按钮,则删除所选中的钢束位图。

注意:如果所选择的钢束位图正在使用,则无法删除。

3.2.2.6 其他设置

点击其他标签,进入图 3.21 所示界面,可以设置系统日期 及时间;点击张拉设置钮,弹出图 3.22 所示界面。

6	系统设置						
	油压传感器	位移传感器	应力传感器	张拉方法	孔位图	钢束位图	其他
	系统日	期 2017-5-16	5	•			
		1					
	系统时	间 15:40:31		<u>▲</u>			
		张拉设置	ŧ.				
							退出

图 3.21 其他参数设置

张拉设置	
初始频率(Hz) 30	
调节频率(Hz) 30	
位移放大范围(mm) ²⁰	
张拉控制 关闭 ▼	
位移显示范围(mm) 13	
确定	取消

图 3.22 张拉设置

1. 初始频率

张拉过程中,变频器开始工作时的输出频率。缺省值为 30Hz,用户一般不需调整。

2. 调节频率

张拉到 80%的设计应力值时变频器的输出频率。缺省值为 30Hz, 用户一般不需调整。

3. 位移放大范围

在曲线区放大显示的位移显示范围。

4. 张拉控制

张拉控制参数有四种选项 (关闭、1、3、5):

1) 关闭: 张拉到设计力值才停止张拉;

2) 1: 出现拐点后采集到1个点即停止张拉;

3) 3: 出现拐点后采集到 3 个点即停止张拉;

4) 5: 出现拐点后采集到 5 个点即停止张拉。

5. 位移显示范围

该参数设置的是曲线区一屏显示的最大位移范围。

3.2.3 参数设置

在主界面点击新建工程钮,弹出图 3.23 所示界面,按照系统的自动向导功能,完成"SETP1"后点击下一步钮进入

"STEP2" ...直到完成"STEP4"为止,即完成新建工程的全过程,如图 3.23~3.26 所示。

3.2.3.1 设置工程参数

在图 3.23 所示工程设置界面,可以设置工程名称、构件名称、桥梁名称、浇筑日期、张拉日期等,设置完成后,点击取消钮,则设置无效;点击下一步钮,则设置有效并进入图 3.24 所示界面。

设置钢束参数 ▼	新建	长感器参数	设置钢纹线参数
•	新建		
•	新建		
	浅公口期。		
	06月日期:	2017 - 5	_ 16
	张拉日期:	2017-5-16	•
		张拉日期: 下一步	※拉日期: 2017-5-16 アー歩 取:

图 3.23 工程参数

3.2.3.2 设置钢束参数

在图 3.24 所示界面,可以选择孔数、钢束数、孔序号、张 拉方法等,设置完成后,点击取消钮,则设置无效;点击上一步 钮,则设置无效并进入图 3.23 所示界面;点击下一步钮,则设 置有效并进入图 3.25 所示界面。

司 新建工程 STEP1		STEP2	STEP3	STEP4
设置工程参	数	设置钢束参数	设置传感器参数	设置钢绞线参数
∫钢束参数──				
孔位图:	1	•	孔号: N1	•
钢束位图:	1	•	【九位图】	钢束位图
张拉方法:	1	•		
应力值(kN):	150.000		9	0390
初应力(%):	15			
最大应力(%):	100		新建孔位图 新建钢束	位图 新建张拉方法
	上一步	ب	-步	取消

图 3.24 钢束参数

点击新建孔位图钮,可创建新的孔位图,详见第 3.2.2.5 节。

点击新建钢束位图钮,可创建新的钢束位图,详见第 3.2.2.6节。

点击新建张拉方法钮,可创建新的张拉方法,详见第 3.2.2.4 节。

1. 应力值(设计应力值)

单根钢绞线张拉的设计应力值。在加压过程中,如果检测应 力值超过该值时立刻停止加压。该值为用户预估的克服锚口摩阻

所要施加的最大应力,一旦克服了锚口处摩阻,理论上,曲线即 可瞬间下降,从而可检测出锚下有效应力值。

2. 初应力

初始张拉占设计应力值的百分比。此项用户不必设置。

3. 最大应力

最大张拉力占设计应力值的百分比。此项用户不必设置。

3.2.3.3 设置传感器参数

在图 3.25 所示界面,可以选择油压传感器、位移传感器、 应力传感器等,设置完成后,点击取消钮,则设置无效;点击上 一步钮,则设置无效并进入图 3.24 所示界面;点击下一步钮, 则设置有效并进入图 3.26 所示界面。

🖹 新建工程			
STEP1	STEP2	STEP3	STEP4
		☆ 置 传 感 器 参 教	☆登研究线参数 ●
回 <u></u> <u></u> F = 4.666356*P+ 新建油压传感	+0.513 器 新建位	○ 开)	言应力传感器检测 所建应力传感器
Ŀ	步 下-	-步	取消

图 3.25 传感器参数

点击新建油压传感器钮,可设置新的油压传感器参数,详见 第 3.2.2.1 节。

点击新建位移传感器钮,可设置新的位移传感器参数,详见 第 3.2.2.2 节。

点击新建应力传感器钮,可设置新的应力传感器参数,详见 第 3.2.2.3 节。

3.2.3.4 设置钢绞线参数

在图 3.26 所示界面,可以设置钢绞线的直径、长度及截面积,设置完成后,点击取消钮,则设置无效;点击上一步钮,则 设置无效并进入图 3.25 所示界面;点击完成钮,则设置有效并 返回主界面。

🗇 新建工程			
STEP1	STEP2	STEP3	STEP4
设置工程参数	设置钢束参数	设置传感器参数	设置钢绞线参数
钢纹线参数			
直径(mm): 15.200		长度(m): ^{8.000}	
截面积(mm2): 140.000			
上一步	5	E成	取消

图 3.26 钢绞线参数

》 注意:新建工程后,在未进行任何张拉检测操作之前,可点击主界面系统菜单中的编辑工程
知进行工程参数的修改。

3.2.4 张拉检测

3.2.4.1 检测一根钢束 (钢绞线)

新建工程完成后,点击主界面左侧控制面板上的开始张拉 钮,则启动钢束的张拉检测过程。

张拉检测过程中,可随时点击暂停张拉或恢复张拉来暂停和 恢复张拉控制;

检测过程中,遇到曲线拐点或者到达应力设计值时,系统会 自动停止加压。

张拉检测完成后,可点击停止张拉钮结束张拉;

若需要重新对当前钢束进行检测,可点击<mark>重新张拉</mark>钮重新启 动张拉测试。

当前钢束张拉结束后,可点击开始卸压来控制退顶过程。

3.2.4.2 曲线区操作

a)

3.27 曲线区

张拉结束后可在曲线区进行以下操作:

- 点击曲线区右下角的操作按钮,弹出图 3.27(b)所示曲 线操控面板;
- 2) 点击收起按钮,关闭曲线操控面板;
- 3) 点击显示网格、隐藏网格控制波形背景网格的显示;
- 4) 点击曲线缩放后,将当前曲线全屏显示,底部有左移、

3.28 曲线缩放

a) 点击曲线区有测试数据的位置,则出现一条竖向光 标;

- b) 点击左移、右移钮,可以左、右移动光标,每次移动一个数据点,同时在曲线左上角显示光标处的位移值、力值。
- c) 点击拐点标记钮,则将当前光标位置设置为拐点;
- d) 点击确定钮,则拐点设置有效;
- e) 点击<mark>取消</mark>钮,则拐点设置无效;
- 5) 点击<mark>数据列表</mark>,以数据列表形式显示测量数据;
- 点击曲线显示,以曲线图形式显示测量数据;
- 「二、「「「「「」」」
 「二、「「」」
 「二、「「」」
 「二、「「」」
 「二、「」」
 「二、「」
 「二、」
 「二、「」
 「二、「」
 「二、「」
- 8) 点击拐点标记按钮可将当前光标位置设置为拐点。

3.2.4.3 手动控制油泵

张拉完成后,用户可点击主界面左侧面板上的开启油泵、关闭油泵来手动控制油泵输出的开关,以实现千斤顶的回顶及测试操作。

《《《》注意:只有在非张拉状态下才能进行油泵的开启和关闭操作。

3.2.4.4 数据的保存

当前钢束检测完毕之后,数据会自动保存,文件名称缺省为

"构件名称-孔号"。一个孔的所有钢束的检测数据保存在同一个数据文件中。

在保存数据文件(扩展名为 ZYW)的同时,每根钢束的检 测曲线会保存为一个图片文件。

3.2.4.5 检测其它钢束

完成当前钢束检测之后,将千斤顶移到下一根待检钢束上, 然后在图 3.27 界面中直接点击待检钢束所在的标签(如:"钢束 2")即可。设置完后,即可按照第 3.2.4.2 节进行该钢束的检 测。

3.2.4.6 检测下一孔

检测完当前孔中的所有钢束之后,即可进行下一孔的检测。 点击新建工程钮,在弹出的参数设置对话框中点击下一步,切换 到钢束参数设置界面,在孔序号中选择下一个待测孔的编号即 可,详参第 3.2.3.2 节。

设置完后,即可重复第 3.2.4.2 节至 3.2.4.6 节进行该孔的检测。

3.2.4.7 注意事项

油泵和千斤顶在使用之前应进行相应的计量操作,获取
 千斤顶的回归方程,并输入到仪器中;

注意: 计量机构提供的干斤顶回归方程
一般分为两种 (F = K * P + f 或 P = K * F + f), 用户可在新建油压传感器时根据需要进行选择, 并输入对应回归方程的系数;

- 2) 应力传感器为选配件,用于力值校验,用户可根据需要 进行购买使用;
- 张拉完成后,仪器将自动计算拐点并在曲线图上标注显示,若出现偏差,用户可手动更改拐点,具体操作如下:在曲线图上单击需要标注的数据点,然后点击曲线 操控面板上的拐点标记按钮实现拐点的设置。
- 3.3 软件的升级

仪器内部的检测软件更新后,用户可从我公司网站下载软件 升级包进行升级,具体操作步骤如下:

- 将升级包解压,并将 Update 文件夹拷贝到 U 盘根目 录下;
- 2) 将 U 盘插入仪器主机面板左侧的 USB 接口;
- 点击主界面系统菜单中的关于仪器按钮, 弹出图 3.29
 所示对话框;
- 4) 点击软件升级按钮,弹出图 3.30 所示对话框,点击开

级

安钮	1, 完成升级操	作。
	关于仪器	
	▶ 智博联 ^{软件升级}	智能张拉应力检测仪 ¥1000 ¥1.0.025-20170510 取消

3.29 关于仪器

软件升级过程中禁止拔掉U盘	
升级	

3.30 升级界面

第4章 快速操作指南

4.1 测试前准备

4.1.1 系统连接

- 1) 测试前,检查所有线缆、设备组件是否齐全;
- 客油泵的出顶口、回顶口分别通过两根油管与千斤顶的 出顶口、回顶口连接好。
- 3) 使用专用信号线将油泵上的油泵控制接口连接到主机。
- 4) 使用专用信号线将千斤顶上的位移传感器连接到主机。
- 5) 先将电源线一端连接到油泵的电源接口,待其他线缆插 接好后另一端供电(电源模块供电、还是电池供电,线 缆有区别)。
- 系统连接好后(如图 4.1 所示),检查所有线缆均连接 可靠,此时液压泵会亮起电源指示灯代表已接通电源。
- 打开主机电源,系统启动完成后自动运行 ZBL-Y1000 检测软件。
- 8) 试运行 1: 手动点击液压设备上的"出顶(出油)"、
 "回顶(回油)"观察千斤顶是否工作正常,整个系统
 是否漏油等。检查完毕,即完成了测试前的系统连接工

作。反复 5 次排空千斤顶中的空气,每次活塞伸长 50--60mm 即可。

3) 试运行 2:点击检测软件主界面上的开启油泵、关闭油
 泵钮,观察千斤顶是否工作正常,整个系统是否漏油
 等。检查完毕,即完成了测试前的系统连接工作。

图 4.1 系统连接示意图

₩ 注意:

本系统中的所有接插件都按不同芯数设计,只要线缆两端插接的插座芯数正确即可放心插上,但别忘了插好插头后"旋紧螺母",尤其是"快速接头"需要旋紧到螺纹根部。

4.1.2 千斤顶放入钢绞线上

4.1.2.1 采用油压传感器 (内置)测量的安装方式

选好被测钢绞线,安装限位器和延长筒(延长筒是否需要安装,视现场的工装情况而定)。

将钢绞线插入千斤顶的中心孔,并离延长筒或限位器大约 15mm 左右的距离,点击开启油泵钮,使千斤顶活塞在工作之 前就预伸出一小段距离,为工作结束时卸压方便脱锚做准备。安 装好后的千斤顶如图 4.2 所示。

图 4.2 安装千斤顶示意图

注意:如果钢束间距较密,千斤顶顶不到锚头处的限 位器时,可适当使用延长筒。千斤顶的活塞需要在使用前自然伸 出 20mm 左右为宜,以防止卸顶时不容易脱锚,导致卡住下不 来。

4.1.2.2 订制应力传感器的测量的安装方式

本系统除了可以用油泵内置的油压传感器进行应力测量外,

还可以选择同步使用应力传感器进行测量,此时系统会自动开启 对比保护功能,若两种传感器所测应力值相差过大将会提示报 警。

应力传感器的安装方式如图 4.3 所示。

图 4.3 安装千斤顶及应力传感器

4.1.3 系统及参数设置

4.1.3.1 系统设置

在开始检测之前,点击主界面上的<mark>系统设置</mark>按钮进入系统设置界面,可以进行油压传感器、位移传感器、应力传感器、张拉方法、孔位图、钢束位图、其他信息的设置,详参第 3.2.2 节。

4.1.3.2 参数设置

在主界面点击新建工程钮、弹出参数设置界面,按照系统的

自动向导功能,完成工程参数、钢束参数、传感器参数及钢绞线 参数的设置,详参第 3.2.3 节。

4.1.4 预紧

点击检测软件主界面上的开启油泵钮或者使用油泵上的进油 按钮,使千斤顶活塞顶出并刚好顶到前面的延长筒或限位器即可 停止油泵。

所有人员离开千斤顶,准备开始正式检测。

4.2 张拉检测

点击主界面左侧控制面板上的开始张拉钮,则启动钢束的张 拉检测过程。

检测过程中,遇到曲线拐点或者到达应力设计值时,系统会 自动停止加压。

张拉检测完成后,可点击停止张拉钮结束张拉;

当前钢束张拉结束后,可点击开始卸压来控制退顶过程。

测试完一根钢束后,按照上述步骤对余下的钢束进行检测, 直到测试完当前孔中的所有钢束。

测试完一个孔之后,如果有必要,可以对当前梁中的其他孔的钢束逐一进行检测。

测试完一片梁之后,可以点击<mark>新建工程</mark>钮,对下一根待检测

的梁的参数进行设置,然后开始检测。

如此反复,直到测试完所有梁,即完成该工程的检测。

注意:张拉完成之后的曲线是静态的,可通过曲线操 控面板上的功能按钮对曲线进行放大查看,也可手动标记拐点位 置,还可以查看过程中的数据列表。此外,系统也会自动将曲线 存为 BMP 文件,可插入到检测报告中。

4.3 现场检测时的注意事项

4.3.1 合理设置应力设计值

张拉检测过程中,一旦检测到锚下有效应力值,系统马上会 停止加压。如果用户预设的应力设计值过小,在达到设计值时仍 未出现有效拐点,系统也会马上停止加压,测试人员应实时进行 分析和调整。

在软件主界面的曲线区,会按用户预设的应力设计值画出一 条标准线,如图 4.4 所示。该值代表用户已知或可以预估出锚下 有效预应力与锚口处摩阻力之和,该值需略大于曲线图中 A 点的 值,否则软件自动检测到等于或超过该设计值后会自动停止加 压,那么也就无法再克服这个总力值再得到后面下降后的 B 点 (即锚下有效应力值)。如果用户在使用时,不清楚该构件的锚 口处的摩阻,张拉之前也没有对类似构件做过摩阻测试实验,那

么建议将该设计值先设置成施工时要求的张拉力值,后续再视检 测的实际情况进行调整。

图 4.4 测试曲线

第5章 计量与检定

系统中所有传感器均由权威计量部门进行检定,并出具计量 检定报告。

5.1 油压传感器及千斤顶的校准与计量

5.1.1 计量

58

1) 按照图 5.1 所示将系统连接好 (详参第 4.1.1 节);

图 5.1 系统连接示意图

- 2) 将千斤顶放到标准测试装置(包括反力架及标准油压表)上;
- 3) 打开主机电源, 仪器按规定预热一段时间;
- 4) 每一次油压计量前,可选择先按下主界面清零键进行清

零(需在弹出输入框内输入密码 zbl123456,按下确认键 之后进行清零操作,该操作只适用于计量,清零在第一 次计量前必须做,其余计量不强求)。

- 5)点击清零按钮弹出密码输入框之后,开始采样并实时显示拉力、油压、位移值以及时间在主界面上,不需要输入密码和确认按键来清零,只是要实时显示值,关闭密码输入框停止采样;
- 点击清零按钮弹出密码输入框之后,开始采样并实时显示拉力、油压、位移值以及时间在主界面上,不需要输入密码和确认按键来清零,只是要实时显示值,关闭密码输入框停止采样;
- 计量人员通过数据绘制曲线,得到参数,最终输入到主机油压传感器回归方程中;
- 8) 在主界面点击系统设置钮,选择油压传感器标签,点击新建钮,弹出图 5.3 所示对话框,输入所有参数之后点击保存钮。
- 结束之后,手动按下液压部分上的回油按钮,此时开始
 回顶,到最后顶要回到底部的时候采取点动(按下很快 撒手)的方式进行。

新建->油压传感器	
传感器编号:]
量程:	MPa
千斤顶系数	
千斤顶编号:	
○ 原始系数	T/MPa
○直径	mm
● 回归方程 (F = K * P + f) ○ 回归方程 (P = K	*F + f)
K = f =	
保存取消	

图 5.3 新建油压传感器

注意:回归方程一般分为两种(F = K * P + f 或 P = K * F + f),用户可在新建油压传感器时根据需要进行选择,并输入对应回归方程的系数。

5.1.2 计量复测

- 1) 在主界面点击清零钮, 查看界面上实时数值的变化。
- 2)点击油泵上的进油按钮,使活塞顶出,开始加压,当标 准压力表显示的应力值为40、80、120、160、200kN 时,松开进油钮停止加压,读取仪器主机显示的测试值 与实际检测传感器上的压力值之间的误差并记录。
- 3) 在油泵上点击回油按钮, 使千斤顶活塞退回;
- 4) 计算标准值与测试值之间的相对误差。

5.2 位移传感器的校准与计量

5.2.1 校准

首先对位移传感器进行校准,步骤如下:

- 1) 按照图 5.1 所示将系统连接好 (详参第 4.1.1 节);
- 2) 打开主机电源, 仪器按规定预热一段时间;
- 3) 在主界面点击系统设置钮,选择位移传感器标签,点击新建钮,弹出图 5.4 所示对话框,输入所有参数之后点击保存钮。
- 在位移传感器列表中选中刚才新建的位移传感器编号, 点击校准钮, 弹出图 5.5 所示对话框。

新建->位移传感	器		
传感器编号:			
量程:			mm
_			
	保存	取消	

图 5.4 新建位移传感器

线性校准		
		开启油泵
校准点(mm):		校准
清零	确定	取消

图 5.5 校准位移传感器

- 5) 传感器放到零点(或者油泵活塞退回到顶底时视为零点 即可);
- 6)点击清零钮,对传感器清零,提示清零成功。此时需要 卡尺记录当前位置位移 A。然后按开启油泵钮,进行实 时采样,之后手动按下出油按钮进行出顶,停止按下之 后再次用卡尺测量当前位置位移 B 并记录 B-A 的差值, 得到差值之后点击关闭油泵按钮;
- 7) 实际测量得到位移传感器伸长的具体数值(即 B-A 差
 值)后,将该数值填写到校准点框内,按校准钮完成校准;
- 8) 点击确定钮,则校准完成;点击取消钮,则校准无效。
- 点击位移传感器参数设置界面的退出钮,返回到主界面,校准完成。
- 10) 在油泵上点击回油按钮,使千斤顶活塞退回;

5.2.2 计量与复测

1) 在主界面点击新建工程钮,按照第 3.2.3 节设置好工程
 参数、钢束参数、传感器参数(选择校准时新建的位移传感器)
 及钢绞线参数;

2) 先用游标卡尺测量出千斤顶活塞起始时的伸长值,在主 界面点击清零,(一般情况下,活塞的即使在起始位置下也是有 一定长度的),点击界面上的清零按钮,弹出密码输入框之后界 面开始实时显示。

 3)用卡尺手动记录当前位置位移 A,此时手动进油出顶, 查看界面上实时显示的位移值,停止按下手动出油按钮之后,用
 卡尺再次测量出顶当前位置位移 B。

4) 查看 B-A 的值与界面上显示的实时位移值是否符合标准,不符合,再次进行上一项位移校准。

5) 复测结束后,将千斤顶活塞回退即可。

附录 1 功能菜单及面板按钮一览表

表 F1.1 3	功能菜单一	览表
----------	-------	----

|--|

	工程参数	设置工程参数(包括工程名称、构件名称、桥梁
		名称、任务编号、浇注日期、张拉日期)
	钢束参数	设置钢束参数(包括孔号、钢束数、张拉方法、
新建工		应力值、初应力、最大应力、孔序号)
程	传感器参	设置传感器参数(包括油压传感器、位移传感
	数	器、应力传感器)
	钢绞线参	设置钢绞线参数(包括直径、长度、截面积)
	数	
	工程参数	修改工程参数(包括工程名称、构件名称、桥梁
		名称、任务编号、浇注日期、张拉日期)
	钢束参数	修改钢束参数(包括孔号、钢束数、张拉方法、
编辑工		应力值、初应力、最大应力、孔序号)
程	传感器参	修改传感器参数(包括油压传感器、位移传感
	数	器、应力传感器)
	钢绞线参	修改钢绞线参数(包括直径、长度、截面积)
	数	
新店会	打开	打开指定的构件数据
刻店 田	删除	删除指定的工程或构件数据
垤	导出	导出指定的工程或构件数据到 U 盘
	油压传感	管理油压传感器库
系统设	器	
置	位移传感	管理位移传感器库
	器	

	应力传感	管理应力传感器库
	器	
	张拉方法	管理张拉方法库
	孔位图	管理孔位图库
	钢束位图	管理钢束位图库
关于仪		查看仪器名称、仪器型号、软件版本信息
器	软件升级	升级仪器内部检测软件
关机		关闭仪器

表 F1.2 面板按钮一览表

面板	按钮	功能说明	
张拉控制	开始张拉	户动/底止光动纲市的관拉	
	停止张拉	问句/ 悖工当时树来的玩好	
	暂停张拉	新原体有半部进行的半位	
	恢复张拉	自行你友当别还们可知过	
	重新张拉	重新对当前钢束进行张拉	
	开始卸压	开始/停止卸压	
	停止卸压		
	开启油泵	非张拉过程下对油泵进行手动开、关	
	关闭油泵		
	清零	将当前的参数清零	
曲线撮控	收起/操作	显示/隐藏曲线操控面板	
田均常宜	曲线缩放	对当前选定的显示区域进行曲线缩放	

	隐藏/显示	关闭/开启曲线图的网络显示功能
	网格	
	恢复默认	恢复默认的曲线显示方式及显示比例设置
	拐点标记	在当前选定位置标记拐点
	曲线显示	切换曲线方式武物探列基方式显示
	数据列表	

附录 2 参考资料

- 1) 《重庆桥梁预应力及索力张拉施工质量检测验收规程》
- 《桥梁预应力张拉施工质量检测技术规程》云南省地方 标准
- 3) 《公路桥涵施工技术规范(JTG-T F50-2011)》
- 4) 国务院《建设工程质量管理条例》(国务院令〔2000〕第 279 号)
- 交通部《公路工程竣(交)工验收办法》(交通部令 [2004]3号)
- 6) 交通部《公路工程技术标准》(JTG B01-2003)

扫描以下二维码可访问我公司官网、关注我公司微信公众号:

公司官网

微信公众平台

67

电话: 400-878-6060 传真: 010-82092858 网址: <u>http://www.zbl.cn</u> 版本: Ver1.0-20210907

