

ZBL-T75D 楼板厚度检测仪 使用说明书

目录	

本说	明书	中	的约定 III
第 1	章	概	述1
1.	1 简	介	
1.2	2 主	要性	主能特点1
1.	3主	要技	支术指标 2
1.4	4 注	意事	事项2
	1.	4.1	使用说明书2
	1.	4.2	工作环境要求:
	1.	4.3	存储环境要求
	1.	4.4	其他要求
1.:	5仪	器的	9维护及保养
	1.	5.1	电源4
	1.	5.2	充电4
	1.	5.3	充电电池5
	1.	5.4	清洁5
1.0	5 责	任	
第 2	章	仪	器描述6
2.	化化	器约	且成6
	2.	1.1	发射、接收探头

ı <

>

2.1.2 主机
2.1.3 伸缩杆9
2.1.4 充电器9
2.1.5 对讲机9
2.1.6 其他附件10 2.2 楼板厚度检测原理 10
第 3章 主机软件 11
3.1 软件功能介绍 11
3.2 厚度检测 12
3.2.1 工程与构件名称13
3.2.2 轴线编号13
3.2.3 测量对角13
3.2.4 构件类型14
3.2.5 设计厚度14
3.2.6 测试界面14
3.3 数据查看 15
3.4 数据管理 17
3.5 系统设置
3.6 关于仪器21
3.7 厚度校准
附录 1 现场检测时的注意事项

111

本说明书中的约定

- 灰色背景、带黑色方框的文字表示界面上的一个按钮,如:
 确定钮。
- 2. 仪器面板上的按键均用【】表示,如:【存储】键。
- 白色背景、带黑色方框的文字表示 Windows 软件菜单命令, 其中"→"表示菜单级间的分割符,如文件→打开表示文件 菜单下的打开菜单项命令。
- 灰色背景、不带方框的文字表示屏幕上选项或菜单名称。如
 选择参数设置中的构件选项。
- 5. 标志 为需要特别注意的问题。
- 除了本说明书中介绍的内容之外,用户在使用仪器的过程中, 会自动显示一些提示信息,请按提示信息操作。
- 本说明书中的软件界面及照片仅用作示意,随着软件升级和 产品的不断改进可能会发生变化,恕不另行通知。

扫描以下二维码可访问我公司官网、关注我公司微信公众号:

公司官网

微信公众平台

第1章概述

1.1 简介

ZBL-T750 楼板厚度检测仪(以下简称"T750")是由北京 智博联科技股份有限公司推出的一体式、智能自动巡检、全程站 立式便携检测设备,主要用于现浇板、混凝土墙、柱、梁、木材 以及陶瓷等非金属厚度检测。其包含的自动巡检技术获取过国家 发明专利。

1.2 主要性能特点

- 1) 摆脱传统蹲卧式测量,实现全程站立式检测;
- 2) 实时定位,双方向指示,引导式自动巡检;
- 3) 自带伸缩杆,收拉方便,使用灵活,体积小,重量轻;
- 4) 320*240 真彩屏,界面美观;
- 5) USB 数据传输;
- 6) 低功耗设计,待机时间长;
- 7) 支持在线升级,客户可永久免费享受更新功能的体验。
- 8) 内置锂电池, USB 充电;
- 9) 人体工程学设计。抓、握、提舒适、操作方便。
- 10) 可通关蓝牙对接客户平台。

1.3 主要技术指标

T750 楼板厚度检测仪的主要性能指标见表 1.1。

项目	指标		
测试范围(mm)	30~903		
最大允许误差	30 mm ~ 200mm	±1	
(mm)	201 mm~600mm	±2	
	601 mm~903mm	±3	
横向测试距离	≥1m		
存储容量	600个构件		
供由方式	内置可充电锂电池(接收、发射探头的电		
民电力式	池额定能量均为 14.8Wh)		
连续工作时间	≥15 小时		
接收探头体积	Ø116 mm × 142mm		
接收探头重量	580g(含锂电池)		
发射探头体积	Ø100mm × 87mm		
发射探头重量	330g(含锂电池)		

表 1.1 主要技术指标

1.4 注意事项

1.4.1 使用说明书

为了更好地使用本检测仪,请您在使用仪器前仔细阅读使用 说明书。

1.4.2 工作环境要求:

环境温度: 0℃~40℃

相对湿度: <90%RH

不得长时间阳光直射

防腐蚀:在潮湿、灰尘、腐蚀性气体环境中使用时,应采取 必要的防护措施。

1.4.3 存储环境要求

环境温度: -20℃~+60℃

相对湿度: <90%RH

不用时请将仪器放在包装箱中,在通风、阴凉、干燥环境下 保存,不得长时间阳光直射。

若长期不使用,应定期通电开机检查。

1.4.4 其他要求

1.4.4.1 避免进水。

1.4.4.2 避免磁场

避免在强磁场环境下使用,如大型电磁铁、变压器附近。

1.4.4.3 防震

在使用及搬运过程中,应防止剧烈震动和冲击。

1.5 仪器的维护及保养

1.5.1 电源

本仪器采用内置专用可充电锂电池进行供电,使用时请注意 电量指示,如果电量不足时,则应尽快采用外部电源(交流电源 或外部充电电池)对本仪器供电,否则可能会造成突然断电导致 测试数据丢失甚至损毁系统;如用交流电源供电,则应确保外接 电源为 AC220±10%V,否则会造成 AC-DC 电源模块甚至仪器 的损坏。禁止使用其他电池、电源为本仪器供电。

1.5.2 充电

用本仪器配套的 AC-DC 电源模块为内部电池充电时,只需 将电源插头端接到 AC220±10%V 的插座中,直流输出端接到仪 器的电源插口中即可。当电源适配器的充电指示灯为红色时,表 示正在对内置电池充电;当指示灯为绿色时,则表示电池已充满。

注意:为了保证完全充满,请保持连续充电 6~8 小时, 同时不要在超过 30℃的环境下对仪器充电。

仪器长期不用,充电电池会自然放电,导致电量减少,使用 前应再次充电。充电过程中仪器和 AC-DC 电源会有一定发热, 属正常现象,应保持仪器、AC-DC 电源或充电器通风良好,便 于散热。

《《》注意:不得使用其它电源适配器对仪器充电,否则有可能对仪器造成破坏。

1.5.3 充电电池

充电电池的寿命为充放电 500 次左右,接近电池充放电寿命时,如果发现电池工作不正常(根本充不上电、充不满或充满之后使用时间很短),则很可能是充电电池已损坏或寿命已到,应与我公司联系,更换新的电池。禁止将电池短路或靠近高温热源。

1.5.4 清洁

每次使用完本仪器后,应该对主机、传感器等进行适当清洁, 以防止水、泥等进入接插件或仪器,从而导致仪器的性能下降或 损坏。

注意:请勿将仪器及配件放入水中或用湿布擦洗!
 注意:请勿用有机溶剂擦洗仪器及配件!
 请用于净柔软的于布擦拭主机。

请用干净柔软的毛刷清理插座。

1.6 责任

本仪器为精密检测仪器,当用户有以下行为之一或其它人为 破坏时,本公司不承担相关责任。

(1)违反上述工作环境要求或存储环境要求。

- (2)非正常操作。
- (3) 在未经允许的情况下擅自打开机壳,拆卸任何零部件。
- (4)人为或意外事故造成仪器严重损坏。

第2章仪器描述

2.1 仪器组成

T750 楼板厚度检测仪主要由发射探头、接收探头、主机及 配件(包括充电器、伸缩杆等)组成。

2.1.1 发射、接收探头

发射探头是一个独立的部件,如图 2.1 所示,通过内置可充 电锂电池供电,主要用于发射稳定的交变电磁场。接收探头(如 图 2.2 所示)用于接收电磁信号,在检测时将采集到的信号值通 过无线方式发送给主机。

图 2.1 发射探头

图 2.2 接收探头

2.1.1.1 电源开关

用于打开/关闭发射、接收探头的电源。

2.1.1.2 电源插座

电量不足时给设备充电:将随机配备的充电器的输入插头连接 200~240V 交流电源、输出插头接入此口,为仪器供电,同时为内部电池充电。

2.1.1.3 工作指示灯

用来标识当前设备的工作状态,指示灯为绿色时表示工作正 常,变为橙色时表示电量低,需要及时充电。

注意:工作指示灯为橙色时,表示电量过低。必须插入电源充电,否则会影响设备正常工作。

2.1.1.4 方向指示灯

用于指示发射探头所在方位,从而指示接收探头的移动方向。 接收探头共有前、后、左、右四个指示灯,测试时,将与电源插 座同侧的指示灯朝前(此即为前指示灯)。

方向指示灯有以下种状态:

- 1) 一个指示灯亮:指示接收探头朝亮灯的方向移动;
- 2) 两个指示灯亮:指示接收探头朝两灯夹角的方向移动;
- 3) 四个指示灯亮:指示接收探头已到达发射探头正上方区域;
- 4) 四个指示灯全灭:指示接收探头超出测试范围。

2.1.2 主机

图 2.3 主机

《》 注意:实际的主机可能与示意图有所差别,请以实物为准。

2.1.3 伸缩杆

伸缩杆主要用于与接收探头、发射探头相连,可根据楼层的 高度调整其长度。两种伸缩杆长度不同,接发射端的长,接收端 的短。

图 2.4 伸缩杆伸长状态

2.1.4 充电器

发射探头、接收探头、主机均配有充电器,充电时将充电器 的输入插头连接 200~240V 交流电源、输出插头接入仪器的电源 插口可供电,同时为其内部电池充电。

2.1.5 对讲机

由于现场检测时,发射探头在楼板的底面,而接收探头在楼 板的顶面,测试人员必须通过对讲机进行交流,以便迅速找准测 量区域。

10

2.1.6 其他附件

详见仪器装箱单。

2.2 楼板厚度检测原理

图 2.5 测试原理图

仪器利用电磁波幅值衰减的原理来测量楼板厚度。发射探头 发射出稳定的交变电磁场,根据电磁理论,电磁场的强度随着距 离衰减,接收探头接收电磁场,并将电磁场的强度值通过无线发 送给主机,主机根据接收到的信号强度值实时计算楼板的厚度并 进行显示、存储。

测量时,发射探头置于被测楼板的一面(即底面),并使其表面与楼板贴紧;接收探头置与被测楼板的另一相对面(即顶面),如图 2.5 所示,接收探头在发射探头对应的位置附近移动,寻找当前厚度值最小的位置,楼板厚度值即是上述过程中的最小值。

11

第3章 主机软件

3.1 软件功能介绍

主要有厚度检测、数据查看,数据管理、系统设置、关于仪器、厚度校准、六大功能模块;

界面按键响应包括:OK、返回,上、下、左、右,fn,电源。 其中 fn 是进入检测时的快捷键。

图 3.1 主菜单界面

图 3.2 楼板测厚功能按键

3.2 厚度检测

进入厚度检测界面后,显示6项设置参数如图3.3所示, 分别为工程名称,构件名称,轴线编号,设计厚度,构件类型, 测量对角。

图 3.3 检测设置

3.2.1 工程与构件名称

同一工程名称下,构件名称不可相同;不同工程名称下,可 以存在相同的构件名称;

工程名称的设置与构件名称 8 个字节等长;不支持汉字,仅 为大写字母,阿拉伯数字及"+""-""_""#"(加、减号,下划线, 井号),完成当前构件的测量,保存后退出,构件编号自动加 1。

3.2.2 轴线编号

该编号支持数字、大写字母、下划线_、减号−、加号+、井 号#。

3.2.3 测量对角

图标用于表示被测对象中所选择的测点是沿哪条线进行的, 包括左斜对角,右斜对角,交叉对角,竖向,横向五种可选,如 下图 3.4 所示:

图 3.4 测量位置

3.2.4 构件类型

预制板、现浇板类型,用于传给 PC 软件时进行合格率判别。

3.2.5 设计厚度

按工程图纸要求输入原本的设计厚度值。

3.2.6 测试界面

参数界面按【fn】键进入测试界面,如果发射探头、接收探 头在主机开机前开机,进入测试界面时仪器会自动连接到接收探 头,此时电量显示图标旁边会出现蓝牙图标,开始获取楼板的实 时检测厚度值。如果接收探头没有早于主机开机,进入测试界面 会出现提示蓝牙断开是否重连,按下【OK】键进行重连,【返回】 键不连。

(屏幕中的方向与安装之后的接收探头的指示灯是保持一致的)。

图 3.5 检测界面

该界面中有前后左右四个方向指示,哪个方向的灯亮起就代

表发射头据接收位置的大致方位在哪里;每个方向可以灯亮/灭来 代表是否在线;

当四个方向的灯全部亮起时,最中心的厚度值会高亮,代表 此时的厚度值是实时值中最小的值,即楼板厚度值。此时,若用 户已经开启语音功能,则播报该结果;

四灯全灭代表没有找到被测目标的方向,即信号太弱;

部分亮,代表被测目标在某一个角落,用户按指示方向移动 即可;

此外,界面元素中,上面状态栏还要包括测试日期,电池电 量,蓝牙连接状态图标;下面检测界面除"饼图"以外,还有当 前的实时厚度值,已经存贮了第几个数据,以及合格率计算结果。 如果当前测点厚度测试完成之后,可以按下【OK】键进行厚度确 定,此时测点个数和合格率会及时刷新,存在测点时从测试界面 返回时会提示是否保存数据,按【OK】保存,【返回】键不保存。

3.3 数据查看

数据显示以列表形式呈现,数据列表分成三级菜单。第一级 菜单如下图 3.6 所示,左侧显示工程名称,右侧显示构件名称。 选中的工程、构件底色是橙色的,此时可以通过左、右键切换选 择的是工程还是构件,获得焦点的一侧字体是白色的,失去焦点

16

一侧字体颜色变成灰色,此时底色橙色不变。可通过上、下键进 行切换选择的工程或者构件。

图 3.6 数据查看界面第一级菜单

在一级菜单下选中工程下某一个构件之后,按下【OK】键进入二级菜单,如下图 3.7 所示,此时菜单左侧显示该工程下所有构件名称,右侧是当前选中的构件的统计信息,可通过上、下键调整选中的构件,选中构件变化时统计信息随着构件变化。

图 3.7 数据查看界面第二级菜单

在二级菜单下选中构件之后按下【OK】键之后此时进入三级 界面详细数据区,如图 3.8 所示。此时不可切换构件,只可用上、 下键实现具体厚度数据翻页。

所有的数据查看显示如果存在翻页会出现可向下翻页的标志, 最后一页会出现可向上翻页的标志,没有任何标志则是只有一页。

图 3.8 数据查看界面第三级菜单

3.4 数据管理

数据管理包括数据导出,数据删除,如图 3.9 所示。

数据导出是通过 USB 线将机内全部数据导出到上位机的机 外 PC 软件中。打开检测数据分析处理系统运行程序里面的楼板 测厚数据分析上位机软件,选中工具下的数据传输,之后进行相 应操作等待主机发送数据。主机按下【OK】键提示是否导出全部 数据如图 3.10 所示,按下【OK】键进行导出,按下【返回】键 则不导出,导出成功之后仪器以及上位机软件界面都有相应提示。

图 3.9 数据管理界面

数据删除支持删除单个工程或者构件数据,当工程下面构件 全部被删除时该工程也将被删除,按下【fn】键可进行全部数据 删除。在数据管理界面选中数据删除之后会进入到数据删除列表 界面,如图 3.11 所示。左、右键可切换焦点选中工程或者构件, 上、下键可实现工程列表或者构件列表的焦点上下切换。此时如 焦点在工程上,按下【OK】键提示是否删除该工程;若焦点在构

件上,按下【OK】键提示是否删除该构件,按下【fn】键提示是 否全部删除数据。所有的删除方式都是按下【OK】键进行删除确 定,按下【返回】按键不删除如图 3.12 所示。

数据删除界面所有显示如果存在翻页会出现可向下翻页的标志,最后一页会出现可向上翻页的标志,没有任何标志则是只有 一页。

图 3.12 数据删除提示界面

3.5 系统设置

包括日期设置,时间设置,蓝牙开关,语音开关,如图 3.13 所示;

日期、时间设置设置成当前实际日期、时间。

蓝牙开关: 蓝牙设置成开的时候才能打开相应对接手机 APP 的蓝牙,设置成关则不能对接手机 APP,连接上 APP 时则会出 现第二个蓝牙图标。(连接接收端成功时在电量旁边的是第一个蓝 牙图标,第二个蓝牙图标挨着第一个蓝牙图标左侧。如果接收端 没有连接成功,第一个蓝牙图标位置空着,第二个蓝牙图标位置 还是和第一个蓝牙图标出现时一样,也就是说无论第一个蓝牙图 标出现还是不出现,第二个蓝牙图标显示始终在固定位置。)

语音开关:语音开关设置成开的时候才能在检测界面检测到 厚度的时候实时进行语音播报,设置成关则不能。

图 3.13 系统设置界面

3.6 关于仪器

包括硬件版本,软件版本,仪器编号、蓝牙名称(与 APP 对 接使用),按下键生成蓝牙二维码,以便客户连接。

图 3.14 关于仪器界面

3.7 厚度校准

如果测量出现较大偏差需要进行二次校准如图 3.15 所示, 屏 幕靠上部分显示要校准的值,可以按动上键或下键来实现切换不 同的校准档位,中下部分显示实际测量值。例如使用标准厚度为 250mm 的模块进行校准,进入校准界面按照正常的测量方法进 行测量,四个灯全亮的时候的稳定厚度就是测量到的实际测量值, 此时调整校准值为 250,按下【OK】键会提示是否进行校准,再 次按下【OK】键进行校准,按下【返回】键退出校准,校准成功 与否界面都会出现相应。其他不同的厚度可以依次使用此方法校 准。

图 3.15 校准界面

注意:测量值的误差未超过技术指标的最大允许误差时无需 校准,通常不建议自行校准。

23

附录1 现场检测时的注意事项

在利用 ZBL-T750 楼板厚度检测仪进行现场检测时,为了使 检测结果更加准确,应该遵循一定的检测方法及原则,否则就会 出现较大的偏差。在检测中应该注意以下事项:

- 伸缩杆与发射、接收探头联接牢固,以确保发射、接收 探头在使用过程中不会从高空跌落,导致发射、接收探 头的损坏。
- 测试过程中,应该确保发射探头表面始终紧贴被测构件
 (楼板等)的测试面,否则测试值会产生误差。
- 测试过程中,应确保接收探头与发射探头电量充足,否则也可能产生误差。使用时如果探头电量不足,其工作指示灯为变为红色,此时应尽快采用外部电源供电。此外,如果边充电边测试,则测试值会产生误差。
- 4. 现场测试时,测量点应尽量避开钢筋。当被测构件中的 钢筋与发射探头表面平行(如图 F1.1a 所示)且在发射 探头上方时,钢筋距离发射探头表面越近,则影响越大 (测试值偏大)。当被测构件中的钢筋与发射探头表面垂 直(如图 F1.1b 所示)且在发射探头上方时,钢筋距离 发射探头中心位置越近,则影响越大(测试值偏小)。试 验表明,垂直钢筋的影响较平行钢筋的影响要大得多, 所以测量点位置绝对不能存在垂直钢筋。当发现某测点 的测量值与其他测点的值(或设计厚度值)相差较大时,

则可能是垂直钢筋的影响,应该换一个测点进行测试。

a)钢筋平行于发射探头表面 b)钢筋垂直于发射探头表面

图 F1.1 钢筋与发射探头的位置图

- 5. 现场测试时,测量点应尽量远离电线。
- 6. 现场测试时,测量点应尽量远离其他铁磁介质。
- 避免在强磁场环境下使用,如大型电磁铁、变压器、电 焊机等附近。
- ZBL-T750 楼板厚度检测仪使用的环境温度应该为 0℃~40℃,如果环境温度超出此范围,则厚度检测值 可能会有误差,特别是测试厚度大于 400mm 的构件时, 环境温度的影响较大。
- 9. 对某一个测点进行测量时,最好遵循以下步骤:
 - 1) 确定测量区域

测量时,测试人员持主机和接收探头在被测楼

25

板上方,另一人持发射探头在被测楼板下方,测试 人员通过对讲机通知下方人员将发射探头支撑在 被测楼板上,使探头表面与楼板下表面(底面)贴 紧;测试人员在发射探头对应的位置附件移动接收 探头,观察信号值变化,当出现信号值时,表示接 收探头已进入测量区域(接收探头位于发射探头正 上方半径1米以内的位置)。

2) 快速定位

在测量区域内,将接收探头与充电插座同侧的 方向指示灯朝前,根据指示灯或者雷达图的指示移 动接收探头,当接收探头的四个方向指示灯全亮 (或者雷达图区的靶心高亮)时,表示接收探头已 经进入发射探头正上方区域。

3) 精确定位

缓慢移动接收探头,找到厚度的最小值,此时 判读厚度值即是楼板厚度测量结果。

电话: 400-878-6060 网址: http://www.zbl.cn 版本: Ver1.2-20230323

