

目 录

本说明书中	P的约定 IV
第 1章	概述1
1.1 简1	ስ1
1.2 主要	要功能及特点 1
1.2.1	主要功能1
1.2.2	主要特点1
1.3 主要	要技术指标2
1.4 注意	意事项 2
1.4.1	使用说明书2
1.4.2	工作环境要求:3
1.4.3	存储环境要求3
1.4.4	其他要求3
1.5 仪器	器的维护及保养4
1.5.1	电源4
1.5.2	充电4
1.5.3	充电电池5
1.5.4	清洁5
1.6 责任	¥5
第 2章	仪器描述

L

	2.1	仪器	組成	6
		2.1.1	主机	6
		2.1.2	发射探头	8
		2.1.3	接收探头	10
		2.1.4	延长杆	11
		2.1.5	其他附件	11
	2.2	测试	原理	12
第	3	章	操作指南	14
	3.1	测量	前准备	14
		3.1.1	使用前检查	14
		3.1.2	确定测量位置。	14
		3.1.3	连接延长杆。	15
		3.1.4	连接主机与接收探头	15
	3.2	开机	J	15
		3.2.1	发射探头	15
		3.2.2	开机	16
	3.3	菜单	9介绍	17
		3.3.1	开始测试	17
		3.3.2	参数设置	21
		3.3.3	数据查看	24
		3.3.4	数据传输	26
		3.3.5	数据删除	28
		3.3.6	系统设置	30
第	4	章	快速入门	32

<

4.1	测试准备	32
4.2	设置参数	32
4.3	开始测试	32
4.4	数据查看	32
4.5	数据传输	33
4.6	数据分析	33
4.7	数据删除	33
4.8	现场检测时的注意事项	33

本说明书中的约定

- 1. 灰色背景、带黑色方框的文字
- 2. 表示界面上的一个按钮,如:确定钮。
- 3. 仪器面板上的按键均用【】表示,如:【存储】键。
- 白色背景、带黑色方框的文字表示 Windows 软件菜单命令, 其中"→"表示菜单级间的分割符,如文件→打开表示文件 菜单下的打开菜单项命令。
- 灰色背景、不带方框的文字表示屏幕上选项或菜单名称。如 选择参数设置中的构件选项。
- 6. 标志 《 为需要特别注意的问题。
- 除了本说明书中介绍的内容之外,用户在使用仪器的过程中, 会自动显示一些提示信息,请按提示信息操作。
- 本说明书中的软件界面及照片仅用作示意,随着软件升级和
 产品的不断改进可能会发生变化,恕不另行通知。

第1章 概述

1.1 简介

ZBL-T720 楼板厚度检测仪(以下简称"仪器"),是一种便 携式、使用无损检测方法对混凝土或其它非铁磁体介质的厚度进 行测量的仪器;使用时,发射探头和接收探头分别放置在楼板的 两相对测试面,分别发射和接收电磁场,仪器根据接收到的信号 强度,测量楼板厚度值。

1.2 主要功能及特点

1.2.1 主要功能

1) 测量混凝土楼板或其它非铁磁体介质的厚度;

1.2.2 主要特点

- 1) 按工程、构件存储楼板厚度测量结果;
- 根据《混凝土结构施工质量验收规范》(GB 50204)规 定的验收标准,对存储数据进行合格判定,并给出统计 结果;
- 3) 存储数据传输至计算机;
- 4) 使用 Windows 软件进行数据分析,生成检测报告。

1.3 主要技术指标

T720 楼板厚度检测仪的主要技术指标见表 1.1。

项目	指标
测试厚度范围	50mm~600mm
测试精度	50 mm~350mm ±1mm
	351 mm~600mm ±2mm
数据存储容量	200 个工程或 30000 个测点
液晶分辨率	320×240
供电方式	内置锂离子电池(主机、发射探头的电池额定
	能量分别为 23.31Wh、9.62Wh)
工作时间	主机供电时间约 6.5 小时,发射探头供电时间
	约7小时
主机重量	740g(含内置锂离子电池)
主机体积	212 mm × 143 mm × 56mm
接收探头重量	60g
接收探头体积	Ø50 mm × 55mm
发射探头重量	360g
发射探头体积	Ø100 mm × 165mm

表 1.1 主要技术指标

1.4 注意事项

1.4.1 使用说明书

为了更好地使用本检测仪,请您在使用仪器前仔细阅读使用说明书。

1.4.2 工作环境要求:

环境温度: 0℃~40℃

相对湿度: <90%RH

不得长时间阳光直射

电磁干扰:无强交变电磁场

防腐蚀:在潮湿、灰尘、腐蚀性气体环境中使用时,应采取 必要的防护措施。

1.4.3 存储环境要求

环境温度: -20℃~+60℃

相对湿度: <90%RH

不用时请将仪器放在包装箱中,在通风、阴凉、干燥环境下 保存,不得长时间阳光直射。

若长期不使用,应定期通电开机检查。

1.4.4 其他要求

1.4.4.1 避免进水。

1.4.4.2 避免磁场

避免在强磁场环境下使用,如大型电磁铁、变压器附近。

1.4.4.3 防震

在使用及搬运过程中,应防止剧烈震动和冲击。

1.5 仪器的维护及保养

1.5.1 电源

本仪器采用内置专用可充电锂电池进行供电。使用时如果仪器电量不足时,仪器会报警(蜂鸣器长鸣),发射探头电量不足时 其电源指示灯会熄灭,此时应尽快采用外部电源供电,否则可能 会造成突然断电导致测试数据丢失甚至损毁系统;如用交流电源 供电,则应确保外接电源为AC220±10%V,否则会造成AC-DC 电源模块甚至仪器的损坏。禁止使用其他电池、电源为本仪器供 电。

1.5.2 充电

用本仪器配套的 AC-DC 电源模块为内部电池充电时,只需 将电源插头端接到 AC220±10%V 的插座中,直流输出端接到仪 器或发射探头的电源插口中即可。当充电器顶部的指示灯变绿时, 则表示电池已经充满。

《▲◆◆ 注意:为了保证完全充满,请保持连续充电 6~8 小时, 同时不要在超过 30℃的环境下对仪器充电。

仪器长期不用,充电电池会自然放电,导致电量减少,使用 前应再次充电。充电过程中仪器和 AC-DC 电源会有一定发热, 属正常现象,应保持仪器、AC-DC 电源或充电器通风良好,便 于散热。

《《》》注意:不得使用其它电源适配器对仪器充电,否则有可能对仪器造成破坏。

Δ

1.5.3 充电电池

充电电池的寿命为充放电 500 次左右,接近电池充放电寿命时,如果发现电池工作不正常(根本充不上电、充不满或充满之后使用时间很短),则很可能是充电电池已损坏或寿命已到,应与我公司联系,更换新的电池。禁止将电池短路或靠近高温热源。

1.5.4 清洁

每次使用完本仪器后,应该对主机、传感器等进行适当清洁, 以防止水、泥等进入接插件或仪器,从而导致仪器的性能下降或 损坏。

注意:请勿将仪器及配件放入水中或用湿布擦洗!注意:请勿用有机溶剂擦洗仪器及配件!

请用干净柔软的干布擦拭主机,用干净柔软的毛刷清理插座。

1.6 责任

本仪器为精密检测仪器,当用户有以下行为之一或其它人为破坏时,本公司不承担相关责任。

- (1)违反上述工作环境要求或存储环境要求。
- (2)非正常操作。
- (3) 在未经允许的情况下擅自打开机壳,拆卸任何零部件。
- (4)人为或意外事故造成仪器严重损坏。

第2章 仪器描述

2.1 仪器组成

仪器主要由四部分组成:主机、发射探头、接收探头、延长杆。

2.1.1 主机

接收探头接口、USB 接口、电源插口及电源开关均在主机前面板上,液晶屏及操作键均在主机上面板,如图 2.1a 所示。而在主机底面有蜂鸣器孔、铭牌及电池舱,如图 2.1b 所示。

a)前面板与上面板

2.1.1.1 键盘

键盘位于主机上面板,各键的功能如表 2.1 所示。

表 2.1 功能键一览表

键名	功能说明			
【菜单】	进入主菜单界面			
【存储】	讨测试数据进行存储或对输入参数进行存储			
【确定】	对当前输入(选择)的数据、状态进行确认			
【返回】	从当前状态或界面返回至上一状态或界面			
[◀、▶]	左/右移光标;向上、向下翻页;			
[♠]	上、下移光标;数据递增、递减;			

2.1.1.2 液晶屏

用于显示操作界面及检测数据等。

2.1.1.3 电源开关

用于打开/关闭仪器电源。

2.1.1.4 接收探头接口

通过信号线与接收探头相连,连接时将信号线一端插头的 "凸起"对准此接口的"凹槽"完全插入后将插头外套拧紧即可。

2.1.1.5 USB 接口

用于数据传输。

2.1.1.6 电源插口

将电源适配器的输入插头连接 200 - 240V 交流电源、输出 插头接入此口,为仪器供电,同时为内部电池充电。

2.1.1.7 指示灯

自动判读状态下,找到最小值后,此灯闪烁。

2.1.1.8 蜂鸣器孔

蜂鸣器透声孔,此孔遮挡后会影响透声效果。

2.1.1.9 铭牌

标示公司名称、生产日期、仪器出厂编号等。

2.1.1.10 电池舱

用于存放充电电池。当需要更换电池时,可将此舱打开后将 旧电池取下,换上新的充电电池。

2.1.2 发射探头

8

发射探头是一个独立的部件,如图 2.2 所示,通过内置可充

电锂电池供电,主要用于发射稳定的交变电磁场。

图 2.2 发射探头

2.1.2.1 电源开关

用于打开/关闭发射探头的电源。

2.1.2.2 探头支架

图 2.3 探头支架连接示意图

用于与固定板相连(如图 2.3 所示),然后与延长杆顶部螺纹 连接。在出厂前已经将探头支架与固定板连接好,用户无需自己

连接,请不要拆卸。

2.1.2.3 电源插口

将随机配套瓣充电器的输入插头连接200-240V交流电源、 输出插头接入此口,为发射探头内部电池充电。充电器顶部有一 指示灯,变绿时表示充电完成,为确保充满,请变绿后再连续充 一段时间。

2.1.2.4 指示灯

电源打开后,右侧绿灯亮。当电量不足时,绿灯熄灭,左侧 的红色电量提示灯亮,灯亮后最多可使用 20 分种,请用户马上充 电,否则会影响使用。

2.1.3 接收探头

图 2.4 接收探头

接收探头用于接收电磁信号,在检测时必须用信号线将其与

主机相连。接收探头顶部有一接口(插座),如图 2.4 所示,测试 时将信号线一端插头的小红点(或小凸起)对准插座上的红点(或 凹槽)插入后发出"卡嚓"声表示连接好。

《《《》注意:较强烈的冲击或震动都会导致探头的性能下降或 损坏,所以应防止发射或接收探头从高处跌落或被压在重物之下。

2.1.4 延长杆

延长杆主要用于与发射探头相连,可根据楼层的高度调整其 长度。延长杆一般由三节组成(如图 2.5 所示),每节约 50cm, 使用前请将三节相连,然后与发射探头通过顶部的螺纹相连,必 须将螺纹旋紧,以使连接牢固。使用完后先将探头拧下,然后将 延长杆再拆卸成三节。

图 2.5 延长杆

2.1.5 其他附件

2.1.5.1 对讲机

由于现场检测时,发射探头在楼板的底面,而接收探头在楼 板的顶面,测试人员必须通过对讲机进行交流,以便迅速找准测 量区域。

2.1.5.2 信号线

用于将接收探头与主机相连,其一端为金属插头,与接收探 头顶部的接口相连,另一端为非金属插头,与主机前面板的接口 相连。

2.1.5.3 充电器

充电器的输入插头连接 200 - 240V 交流电源、输出插头接 入主机或发射探头的电源插口,为主机或发射探头供电,同时为 其内部电池充电。

充电器顶部有一指示灯,变绿时表示充电完成。主机的充电 时间约 7.5 小时,发射探头的充电时间约 3 小时,为确保充满, 请变绿后再连续充一段时间。

2.1.5.4 数据传输线

用于数据传输。传输时将其一端插入计算机 USB 接口,另 一端插入仪器主机前面板的 USB 接口。

2.2 测试原理

仪器利用电磁波幅值衰减的原理来测量楼板厚度。发射探头 发射出稳定的交变电磁场,根据电磁理论,电磁场的强度随着距 离衰减,与主机相连的接收探头接收电磁场,并根据电磁场的强 度来测量楼板的厚度。

测量时,发射探头置于被测楼板的一面(即底面),并使其表面与楼板贴紧;接收探头置与被测楼板的另一相对面(即顶面),

如图 2.6 所示,接收探头在发射探头对应的位置附近移动,寻找 当前值最小的位置,楼板厚度值即是上述过程中的最小值。

第3章 操作指南

3.1 测量前准备

3.1.1 使用前检查

分别检查主机、发射探头是否电量充足

主机进入检测状态,将发射探头逐渐接近接收探头,查看信 号值是否正常变化。

3.1.2 确定测量位置。

勘察测试现场后,确定测量点的位置,并约定测量顺序(如 图 3.1 所示)。

图 3.1 测点布置示意图

《《《》注意:测量点应尽量远离钢梁等大体积金属物体,距离 大于 10cm 以上。

3.1.3 连接延长杆。

将延长杆顶部的螺纹与发射探头的固定板底部的螺纹连接, 必须确保两者连接牢固可靠。

3.1.4 连接主机与接收探头

用信号线将主机与接收探头相连,连接方法见第2.1节。

3.2 开机

3.2.1 发射探头

打开发射探头电源开关,电源指示灯亮,发射探头工作正常。

根据楼板高度调节延长杆长度,然后按照图 3.2 所示的方式, 将发射探头支撑在被测楼板上约定位置,使探头表面与楼板下表 面贴紧;使用对讲机通知楼上测试人员准备完毕。

图 3.2 发射探头放置 **龙意:如果开机后指示灯无显示应尽快充电。**

3.2.2 开机

16

按下主机**电源开关**,出现开机界面(如图 3.3 所示),界面中显示公司名称、仪器型号与名称、当前日期与时间、存储容量、剩余电量等基本信息,约5秒后自动进入主菜单界面(如图 3.4 所示),开机工作完成。

开机界面中电池容量指示条的黑色部分代表剩余电量的多少; 存储容量用已保存数据量与总容量的百分比来表示。

北京智博联科技股份有限公司
Z B L - T 7 2 0
楼板厚度检测仪
今天是 14年09月07日 08时18分28秒
存储容量 98% 剩余电量 *****

图 3.3 开机界面

《《注意:如果指示条空白或有长鸣音提示,应尽快充电。

《《《》注意:在每测试完一个工程或当存储空间快满时,应将 机内测试数据传输到计算机,然后执行数据删除操作(参照3.3.5 节)。

在主菜单界面按【返回】键,可以返回至开机界面查看电池 电量及存储容量等信息。

17

3.3 菜单介绍

仪器开机后,稍等几秒钟后进入图 3.4 所示的主菜单界面, 主要有六个菜单项:开始测试、参数设置、数据显示、数据传输、 数据删除及系统设置。

图 3.4 主菜单界面

按【▲、★】键将光标**C**移动至某一菜单项后按【确定】键 即进入所选择的相应功能;

按【▶】键可以打开或关闭屏幕的背光。

3.3.1 开始测试

在主菜单界面按【▲、★】键将光标移至开始测试菜单项, 按【确定】键即进入图 3.5 所示的测试界面。

3.3.1.1 确定测量区域

测量时,测试人员持主机在被测楼板上方,另一人持发射探 头在被测楼板下方,测试人员通过对讲机通知下方人员将发射探

头支撑在被测楼板上,使探头表面与楼板下表面(底面)贴紧; 测试人员将接收探头与楼板上表面(顶面)贴紧,在发射探头对 应的位置附件移动接收探头,观察信号值变化,该值较强的区域 即是测量区域。

图 3.5 测试界面

3.3.1.2 读取测量结果

仪器提供两种测量方式:手动测量、自动测量,可以按【▶】 键在两种测量方式之间切换,右上角的判读状态标志分别显示 MANU、AUTO。在自动测量状态下,按【◀】键可以选择是否自 动锁定最小值,当选择自动锁定时,在判读状态标志左侧会显示 LOCK 字样。

1)手动测量方式

18

仪器提供三种显示方式来指示接收探头和发射探头的相对位 置:

信号值 ——接收探头接收到的信号大小,信号值越大, 厚度越小,反之厚度越大。

当前值 ——信号值对应的厚度值。

信号指示条——指示条越长,信号值越大,反之信号值越小。

在测量区域内,缓慢移动主机,寻找当前值最小(或信号值 最大)的位置,该位置即是接收探头与发射探头正对的位置,此 时当前值即是楼板厚度测量结果。

2) 自动测量方式(无锁定)

在该方式下,仪器自动判定并记录一次扫描过程中最小厚度 值,显示在自动判读值位置。

a) 一次扫描

在测量区域内确定一条测线L1(如图 3.6 所示), 将接收探头沿测线L1 向信号值增大的方向扫描,当越 过L1 与发射探头垂点的位置 P1 后,发出鸣音提示(同 时面板 LED 指示灯亮),此时将接收探头沿测线向反方 向移动,寻找当前值与自动判读厚度值一致的位置(或 信号值的峰点),即 P1 点。

b) 二次扫描

测线 L1 在 P1 点的垂线为测线 L2,将接收探头沿 L2 向信号值增大的方向扫描,当越过 L2 与发射探头相 交的位置后,发出鸣音提示(同时面板 LED 指示灯亮), 此时自动判读厚度值即是楼板厚度测量结果。

3) 自动测量方式(锁定)

在该方式下,将接收探头在发射探头上方的一定区域内移动, 仪器总是锁定扫描过程中出现的最小厚度值,显示在自动判读值 位置。

《《《》注意:一般在同一测点处应多次测量,取最小值作为该 点的测量结果。

3.3.1.3 存储测量结果

按【存储】键存储测量结果,存储数相应增加。

注意:在手动测量状态下,存储当前值;在自动测量状态下,存储自动判读厚度值,如果该值显示空白,即没有自动判读写度值,如果该值显示空白,即没有自动判读结果出现时,不响应存储操作。

3.3.1.4 返回上一级

测量结束后,按【返回】或【菜单】键则返回上一级。也就 是说如果从主菜单界面进入测试,则返回至主菜单,如果是从参 数设置界面进入,则返回至参数设置界面。

21

3.3.2 参数设置

在主菜单界面按【▲、★】键将光标移至参数设置菜单项, 按【确定】键即进入图 3.7 所示的参数设置界面,可以设置工程 名称、构件名称、设计厚度、构件类型等参数。

3.3.2.1 设置工程名称与构件名称

工程和构件名称设置主要用于文件管理。仪器采用两级目录 管理方式,工程为第一级目录,构件为第二级目录。

《《《》注意:工程名称不允许重名,但允许在已有工程名称下添加构件;构件名称可以重名。构件名称可以不设置,每次测完一个构件后,构件名称会自动增加。

图 3.7 参数设置界面

按【▲、→】键将光标移至工程名称或构件名称项,按【确 定】键弹出软件键盘,如图 3.8 所示,此时可对工程名称或构件 名称进行设置。

图 3.8 名称设置界面

刚开始光标停留在工程名称或构件名称的第一个字符下,按 【4、→】键选择需要修改的字符位,按【→】键进入字符选择状态,按【4、→、本】键选择需要输入的字符,按【确定】键输 入所选字符,光标位置自动后移一位。设置完毕后按【返回】键, 返回字符位选择状态,按【存储】键则保存设置,按【返回】键 则取消设置。

3.3.2.2 设置设计厚度

22

设置楼板设计厚度值是为了自动分析测试结果,用户根据设 计资料输入该参数。

在图 3.8 所示的参数设置界面,按【▲、→】键将光标停留 在设计厚度项,按【确定】键后进入修改状态,光标停留在当前 厚度值的最高位,此时按【4、▶】键可以选择需要修改的数字位, 按【▲、→】键可使设计厚度值的当前位数字加 1 或减 1,长按【▲、 →】键实现连续增减操作(即响应连击操作)。设置完后按【存储】 键保存修改值并退出修改状态。厚度值的设置范围为 50mm~

23

600mm,按【存储】键后如果设置的值在此范围内,则保存修改, 否则提示"厚度值超限,请重新输入",光标依然定位在厚度值修 改处方便继续修改。

3.3.2.3 选择构件类型

构件类型是指被测楼板的结构类型,分现浇结构和预制结构。 仪器根据设计厚度值和结构类型对测试数据进行合格判定,并计 算统计结果。按照《混凝土结构工程施工质量验收规范》(GB 50204—2002)规定,现浇结构的截面尺寸允许偏差为+8mm, -5mm(钢尺检查);预制构件的宽度、高(厚)度允许偏差为± 5mm。

在图 3.8 所示的参数设置界面,按【▲、→】键将光标停留 在构件类型项;按【确定】键后进入修改状态,此时按【▲、→】 键可循环选择构件类型,选择完后按【存储】键保存修改并退出 修改状态,按【返回】键放弃修改并退出修改状态。

3.3.2.4 开始测试

参数设置完毕,按【存储】键直接进入图3.5所示测试界面。

注意:工程名不能重名!因此当输入的工程名称已经存在且有存储数据时,仪器提示"该工程已存在,是否添加构件",用户按【确定】键在该工程下添加构件,按【返回】键或【菜单】键返回参数设置界面,重新修改工程名称。

3.3.2.5 返回主菜单

在参数设置界面,按【返回】键或【菜单】键则返回至图 3.4 所示的主菜单界面。

3.3.3 数据查看

在主菜单界面按【▲、→】键将光标移至数据显示菜单项, 按【确定】键即进入图 3.9 所示的数据查看界面,显示所有已测 工程及所选工程中的所有构件的测试数据。工程和构件按存储的 先后倒序显示,即最后存储的工程最先显示。没有存储数据时, 显示"数据空"。

3.3.3.1 选择工程

进入数据查看界面后,仪器处于工程选择状态,光标停留在 工程名称栏中第一个工程名称下(如图 3.9a 所示),按【▲、→】 键移动光标,光标移至某一工程,则在构件名称栏显示该工程中 的所有构件;移至待查看工程后按【确定】键,则进入构件选择 状态。

在工程名称栏的最下方会显示翻页提示:如果光标在第一页时,显示"》"表示可以向下翻页;如果光标在最后一页时,显示"^{*}"表示可以向上翻页;如果光标在其他页,则同时显示"^{*}"、 "^{*}"表示可以向上、向下翻页。

按【◀、▶】键可向上、向下翻页,如果下页的工程数不足一 页显示时,光标将停留在最后一个工程名处;按【▲】键将光标 移至当前页第一个工程时会自动向上翻页;按【→】键将光标移 至当前页最后一个工程时会自动向下翻页。

工程名称	构件名称	数	据	
GCMC0008	GJMC0008			
GCMC0007	GJMC0007			
GCMC0006	GJMC0006			
GCMC0005	GJMC0005			
GCMC0004	GJMC0004			
GCMC0003	GJMC0003			
GCMC0002	GJMC0002			
GCMC0001	GJMC0001			
GCMC0000	GJMC0000			
×				

a)选择工程

工程名称	构件名称	数 据
GCMC0008	GJMC0008	设计值: 200 mm
GCMC0007	GJMC0007 GIMC0006	平均值: 198 mm
GCMC0005	GJMC0005	合格率, 96%
GCMC0004	GJMC0004	品十百, 216
GCMC0003 GCMC0002	GJMC0003 GTMC0002	取八值: 210
GCMC0002 GCMC0001	GJMC0001	取小值: 192
GCMC0000	GJMC0000	构件类型:现浇
	~	

b)选择构件

工程名称	构件名称		数	据	
GCMC0008	GJMC0008	≈54	/56	(96%	6)
GCMC0007	GJMC0007	202	200	198	197
GCMC0005	G IMC0005	202	200	198	197
GCMC0004	GJMC0004	202	200	198	197
GCMC0003	GJMC0003	202	200	198	197
GCMC0002	GJMC0002	202	200	198	197
GCMC0001 GCMC0000	G IMC0001	202	200	198	197
	0,1100000	202	200	198	197

c)显示测点数据

图 3.9 数据查看界面

3.3.3.2 选择构件

选择工程后,按【确定】键进入构件选择状态,光标停留在 所选工程的第一个构件名称下(如图 3.9b 所示)按【▲、★】键 移动光标,光标移至某一构件,则在数据栏显示该构件的设计值、 平均值、合格率等统计信息。移至待查看构件后按【确定】键, 则显示该构件的测点数据。

在构件名称栏的最下方会显示翻页提示,其意义同上。翻页 操作方法也同上。

3.3.3.3 显示数据

选择构件后按【确定】键则显示该构件各测点的厚度值(如 图 3.9c 所示),第一行显示合格测点数/总测点数和合格率,下面 显示的是各测点的厚度值。

在数据栏的第一行会显示翻页提示,其代表的意义同上;按 【▲、**↓**】进行翻页。

3.3.3.4 返回主菜单

数据查看完毕,按【返回】键返回构件选择状态,再次按【返 回】键返回工程选择状态,再按【返回】键返回主菜单界面。如 果按【菜单】键则直接返回主菜单界面。

3.3.4 数据传输

数据传输是将仪器内存储的数据传输到计算机,传输前请确 认计算机端已经安装"厚度检测数据处理软件"。用 USB 线将本 仪器的 USB 接口和计算机的 USB 接口连接好,如果是第一次使

27

用数据传输功能,则必须安装驱动程序(参见《厚度检测数据处 理使用说明书》附录 USB 驱动程序的安装)。

数据传输的操作步骤如下:

- 运行"厚度检测数据处理软件",执行工具-数据传输, 选择数据类型(T720测厚数据),选择传输端口(USB), 按传输按钮,在弹出的文件夹选择对话框中选择文件存 储路径后按确定钮。详细操作参见《厚度检测数据处理 使用说明书》第3.2.5节。
- 2) 进入仪器主菜单界面选择数据传输,按【确定】键进行数据传输。如果此时数据存储区没有数据,则提示"数据空"。如果存储区数据不为空,则进入图 3.10a 所示的数据传输确认界面,按【确定】键开始数据传输,显示传输进度(如图 3.10b 所示),按【返回】键返回主菜单。传输完毕后,仪器返回主菜单界面。
- 3)数据传输完毕后,计算机端传输软件弹出"工程选择" 对话框,在工程列表中显示所传输的所有工程,用户可 以选择待保存的工程,选择完后,点击确定钮,则将所 选工程保存在第一步所选文件夹中,每个工程保存为一 个文件,文件名缺省为工程名称。详细操作参见《厚度 检测数据处理使用说明书》第 3.2.5 节。
- 用户可以对传输过来的数据进行后续分析处理,并生成 检测报告。

a)传输确认

传输进行中 ■■■■■■	

3.3.5 数据删除

28

在确认仪器内存储的有效数据已经传输至计算机后,为了释 放存储空间,可以将仪器内部所有已测数据删除。

在仪器主菜单界面选择数据删除项,按【确定】键进行数据 删除操作。如果此时数据存储区没有数据,则提示"数据空"。如

果存储区数据不为空,则进入数据删除确认界面(如图 3.11a 所示);按【返回】键则不执行删除并返回主菜单,按【确定】键则开始数据删除操作,显示删除进度(如图 3.11b 所示)。

a)删除确认

b)数据删除

图 3.11 数据删除界面

删除操作大约需要 10 秒,数据删除完毕,仪器返回主菜单 界面。

数据删除后,仪器自动将参数设置为默认值:工程、构件名称为"0000000",设计厚度为200mm,构件类型为现浇结构, 判读方式为手动判读,按键声音开启。

《《《》注意: 该功能用于将仪器内已存储的数据全部删除, 删除后不可恢复。

3.3.6 系统设置

该功能用于设置仪器时间日期、按键声音。

在主菜单界面按【▲、→】键将光标移至系统设置菜单项, 按【确定】键即进入图 3.12 所示的系统设置界面。

> ☞ 凾按键声音:开 回时间:08:18 回日期:2007-07-07

3.3.6.1 按键声音

在嘈杂环境中,可以设置按键音来帮助用户确认按键操作。 按【▲、★】键将光标调整到按键声音选项,按【确定】键后进入 修改状态,此时按【▲、★】选择开或关,设置完后按【存储】键 保存修改值并退出修改状态,按【返回】键则放弃修改并退出修

改状态。

3.3.6.2 设置时间、日期

仪器具有时钟功能,用户可以在系统设置功能中改变时间、 日期设置。仪器自动存储构件第一次存储的时间。

按【▲、→】键将光标调整到时间或日期选项,按【确定】 键后进入修改状态,此时按【4、>】键选择需要修改的位,按【▲、 →】键调整数字。设置完后按【存储】键保存设置值并退出修改 状态,按【返回】键则放弃修改并退出修改状态。

3.3.6.3 返回主菜单

设置完所有参数后,按【返回】键或【菜单】键则返回主菜 单。

第4章 快速入门

4.1 测试准备

确定测量位置→连接延长杆→连接主机与接收探头→打开发 射探头开关→将发射探头表面紧贴楼板底面→打开仪器电源。详 参第三章第 3.1 节及 3.2 节。

4.2 设置参数

仪器启动后进入主菜单界面→设置工程名称→设置构件名称 →设置待测楼板的设计厚度→选择楼板类型。详参第三章 3.3.2 节。

4.3 开始测试

设置完参数后按【存储】键进入测试界面→确定测量区域→ 确定测量点→读取测量结果→存储测量结果→测量其他测点直到 测试完该构件所有测点。详参第三章 3.3.1 节。

重复 4.2 及 4.3, 直到测试完该工程中所有构件。

4.4 数据查看

32

测试完毕,按【菜单】键进入主菜单界面→选择待查看工程 →选择待查看构件→查看构件统计信息→查看构件测点数据。详 参第三章 3.3.3 节。

4.5 数据传输

用 USB 数据传输线连接仪器与计算机→运行数据传输软件 →设置数据类型、选择端口→选择存储路径→在仪器主菜单界面 选择数据传输菜单项→传输确认→开始传输→传输完毕后选择待 保存工程→保存数据文件。详参第三章 3.3.4 节。

4.6 数据分析

在"厚度检测数据处理软件"中打开楼板厚度测试数据文件 (ZTW 文件)→设置工程信息、构件信息等→进行评定→保存文 件→打印输出→生成检测报告。详参《厚度检测数据处理使用说 明书》相关章节。

4.7 数据删除

在分析完所有数据确认没有问题之后,即可将仪器内部的数 据删除掉,以节约磁盘空间。将仪器内部的数据删除方法、步骤 详见第 3.3.5 节。

4.8 现场检测时的注意事项

在利用 ZBL-T720 楼板厚度检测仪进行现场检测时,为了使 检测结果更加准确,应该遵循一定的检测方法及原则,否则就会 出现较大的偏差。在检测中应该注意以下事项:

 延长杆与发射探头联接牢固,以确保发射探头在使用过 程中不会从高空跌落,导致发射探头的损坏。

33 🧲

- 2) 测试过程中,应该确保发射探头表面始终紧贴被测构件
 (楼板等)的测试面,否则测试值会产生误差。
- 测试过程中,应确保仪器与发射探头电量充足,否则也可能产生误差。使用时如果仪器电量不足时,仪器会报警(蜂鸣器长鸣),发射探头电量不足时其电源指示灯会熄灭,此时应尽快采用外部电源供电。此外,如果边充电边测试,则测试值会产生误差。

图 4.1 钢筋与发射探头的位置图

4) 现场测试时,测量点应尽量避开钢筋。当被测构件中的
 钢筋与发射探头表面平行(如图 4.1a 所示)且在发射探
 头上方时,钢筋距离发射探头表面越近,则影响越大(测)

试值偏大)。当被测构件中的钢筋与发射探头表面垂直 (如图 4.1b 所示)且在发射探头上方时,钢筋距离发射 探头中心位置越近,则影响越大(测试值偏小)。试验表 明,垂直钢筋的影响较平行钢筋的影响要大得多,所以 测量点位置绝对不能存在垂直钢筋。当发现某测点的测 量值与其他测点的值(或设计厚度值)相差较大时,则 可能是垂直钢筋的影响,应该换一个测点进行测试。

- 5) 现场测试时,测量点应尽量远离电线。
- 6) 现场测试时,测量点应尽量远离其他铁磁介质。
- 7) 避免在强磁场环境下使用,如大型电磁铁、变压器、电 焊机等附近。
- T720 楼板厚度检测仪使用的环境温度应该为 0℃~
 40℃,如果环境温度超出此范围,则厚度检测值可能会
 有误差,特别是测试厚度大于 400mm 的构件时,环境
 温度的影响较大。
- 9) 对某一个测点进行测量时,最好遵循以下步骤:
 - a) 确定测量区域

测量时,测试人员持主机在被测楼板上方,另 一人持发射探头在被测楼板下方,测试人员通过对 讲机通知下方人员将发射探头支撑在被测楼板上, 使探头表面与楼板下表面(底面)贴紧;测试人员 将接收探头与楼板上表面(顶面)贴紧,在发射探 头对应的位置附件移动接收探头,观察信号值变化, 该值较强的区域即是测量区域。

b) 一次扫描

在测量区域内确定一条测线L1(如图4.2所示), 将接收探头沿测线L1向信号值增大的方向扫描,当 越过L1与发射探头垂点的位置P1后,发出鸣音提 示(同时面板LED指示灯亮),此时将接收探头沿 测线向反方向移动,寻找当前值与自动判读厚度值 一致的位置(或信号值的峰点),即P1点。

图 4.2 测量示意图

c) 二次扫描

36

测线 L1 在 P1 点的垂线为测线 L2,将接收探 头沿 L2 向信号值增大的方向扫描,当越过 L2 与发 射探头相交的位置后,发出鸣音提示(同时面板 LED 指示灯亮),此时自动判读厚度值即是楼板厚度测量 结果。

电话: 010-51290405 传真: 010-51290406 网址: http://www.zbl.cn 版本: Ver5.0-20160912

