目录

第一章概述

1.1 简介

无核密度仪(简称: EDG)可以精确的测量道路和地基中土壤的湿密 度、含水率、干密度及压实度,其测量精度主要取决于操作者的正确 使用,因此详细阅读本操作手册将有助于更好的使用该产品。

1.2 基本原理

土壤无核密度仪是基于时域反射原理的一种测量土壤含水量和干 密度的新型仪器,其原理是通过测量由 TDR 脉冲发生器发出的阶梯式 电磁脉冲,在通过打入土壤中的四根金属钢针的传播时间和采集到的 电压信号,通过数字频率合成技术(DDS)来保证高精度的无线频率, 然后通过点对点测量插入土壤的钢钉之间的电磁波参数,得出精确的 测量结果

当电磁波通过土壤时,受到土壤密实程度的不同,会影响到电磁波的波形,也就是说电磁波通过土壤时,其本身的相位和幅值都会受到相应的影响,然而我们通过对比标准的土壤模块的衰减参数,可以计算出被测土样的湿密度和含水率.

1.3 主要用途

用于以下范畴压实材料的湿密度、含水量的测量:开挖、回填施 工; 地下道、地下室和地基;回填和沟渠、垃圾; 路基基础及沟槽

2

回填。主要适用于粘土和无粘性土壤,也可以适用于石灰或者水泥改良土壤,沙砾土等土壤.

1.4 仪器特点

(1) 可代替核子密度测量法、灌砂法、环刀法以及干燥法。

(2) 不再需要核子仪器所必需的各种许可证。

(3) 操作员不需要专门的培训证书和辐射监测。

(4)用户界面良好、仪器有中文和英文操作界面,简单易学、使用方 便、性价比高,适合小组中每个人员使用。

(5) 快速, 可靠, 轻便、牢固、精确, 重复性好的实时读数。

(6) 采用高质可靠的点对点 RF 技术

(7) 2-3 分钟显示测量结果

(8) 采用数字 DDS 频率合成技术,不需要校准,使用过程中不会产生数据漂移

1.5 技术指标

- (1) 湿密度范围:标准的压实土壤现场范围
- (2) 湿密度精度:标准测试的 0-2%
- (3) 含水量精度:标准测试的 0-3%
- (4)5吋高亮触摸屏幕,强光下清晰可见
- (5) 检测深度:标准 150mm,最大测深 300mm (需定制钢针)
- (6) 内部数据记录器可储存 50000 个读数(最大支持 32GTF 卡存储)

(7) 配备 USB 接口, U 盘直接传输数据或进行机内软件升级

(8) 电源:12V, 2600mAh 锂电充电电池, 连续工作 20 小时

(9) 操作温度:环境温度零下5℃至 45℃

(10) 体积重量

主机体积: 206mm*120mm*50mm) 重量: 0.96kg

1.6 注意事项

(1) 仪器使用前请仔细阅读本说明书。

(2) 工作环境要求:

环境温度:0℃~45℃

相对湿度: <90%RH

不得长时间阳光直射

防腐蚀: 在潮湿、灰尘、腐蚀性气体环境中使用时, 应采取必要的防护措施。

(3) 避免进水。

(4) 存储环境要求

环境温度: -20℃~+60℃

相对湿度: <90%RH

不用时请将仪器放在包装箱中,在通风、阴凉、干燥环境下保存 不得长时间阳光直射

若长期不使用,应定期通电开机检查

1.7 电源及充电

本仪器使用内置专用可充电锂电池进行供电,使用时请注意电量 指示,如果电量不足时,则应尽快采用外部电源(交流电源或外部充 电电池)对本仪器供电,否则可能会造成突然断电导致测试数据丢失 甚至损毁系统;如用交流电源供电,则应确保外接电源为AC220± 10%V,否则会造成AC-DC电源模块甚至仪器的损坏。禁止使用其他电 池、电源为本仪器供电。

用本仪器配套的AC-DC电源模块为内部电池充电时,只需将电源 插头端接到AC220±10%V的插座中,直流输出端接到仪器的电源插口 中即可。当充电器面板上的充电指示灯亮起时,表示对仪器内置电池 充电;当指示灯变绿时,则表示进入慢充状态。

注意:为了保证完全充满,请保持连续充电6[~]8小时,同时不要 在超过40℃的环境下对仪器充电。

仪器长期不用,充电电池会自然放电,导致电量减少,使用前应 再次充电。充电过程中仪器和AC-DC电源会有一定发热,属正常现象, 应保持仪器、AC-DC电源或充电器通风良好,便于散热。

注意:不得使用其它电源适配器对仪器充电,否则有可能对仪器 造成破坏。

充电电池的寿命为充放电1000次左右,接近电池充放电寿命时, 如果发现电池工作不正常(根本充不上电、充不满或充满之后使用时 间很短),则很可能是充电电池已损坏或寿命已到,应与我公司联系, 更换新的电池。禁止将电池短路或靠近高温热源。

1.8 责任

本仪器为精密检测仪器,当用户有以下行为之一或其它人为破坏时,本公司不承担相关责任。

- (1) 违反上述工作环境要求或存储环境要求。
- (2) 非正常操作。
- (3) 在未经允许的情况下擅自打开机壳,拆卸任何零部件。
- (4) 人为或意外事故造成仪器严重损坏。

第二章仪器描述

2.1 仪器组成

土壤无核密度仪主要由主机系统、传感器及配件(包括电源适配器)组成。

2.2 主机

主机采用CNC加工的金属外壳,配备双ARM控制器及高精度电阻触 摸屏。

2.3 电源开关

用于打开/关闭仪器电源,按下电源按钮打开仪器,再次按下则 关闭仪器。仪器开启时,电源开关指示灯亮起。

2.4 电源插座

将随机配备的电源适配器(AC-DC)的输入,插头连接110-240VAC 电源、输出插头接入此口,为仪器供电,同时为内部电池充电。

2.5 USB 接口

标准的USB接口,可以将U盘插入该口,将仪器内部的检测数据拷贝至U盘,然后转存入计算机中;也可通过该口进行仪器内部软件的升级更新工作。

2.6 土钉

土钉是砸入土中采集电子数据,配备了一个模版,用来确定土钉 的精确位置。 土钉由不锈钢制成。如果锥形头在多次使用后变扁或 变钝,不能再保持圆锥型形状,而土钉尾部也开始明显压扁时,就要 及时修复损部位,避免使用时由于钢硝飞溅导致受伤。

2.7 温度探头

温度探头接在 EDG 主机右侧,由于土壤温度是影响 EDG 试验精度 的重要参数,因此进行试验时必须将温度探头放入土中,EDG 主机通 过温度信息进行温度补偿,从而使试验结果更加准确。土模试验时必 须接温度探头,现场试验时可以不接,但试验结果就不能得到温度补 偿。

第三章仪器操作

3.1 开机界面

按下仪器电源开关,仪器上电,出现开机界面,开机界面启动完成自动进入主菜单界面(图3.1)

3.2 建立土模

3.2.1在主界面选择"土壤模 型"按钮进入建立土模界面 (图3.2),点击"新建"按 钮可以为施工现场命名,方便 客户记录。需要注意的是这些 指定名称是独一无二的,因此 操作者要避免混淆。如果土模 或土模里测试点被删除的话, 土模编号或土壤测试编号就 不能被EDG再次使用。同样, 如果实验数据或实际测试数 据被删除,实验编号或实际测 试编号也不能被再次使用。 新建土模时需要先输入击实 试验测量的最大干密度和最

<u>图</u>3.2

佳含水量(图3.2.1)完成后选 择建好的土模名称,点击右侧 确认按钮进入测试点界面(图 3.3)。

■3.3 3.2.2 对于一个尚未测试的土 壤类别,要先创建一个土模,而创建一个土模需要3个测试点来校准 该土壤的物理特性(最多可建立16个测试点如图3.3)

点击创建新测试点界面跳转到测试界面(图 3.4),在一个测试点需要采集两种连接方式的读数,点击测试 A 按钮时电极夹连接图上的 A-A 对角,点击测试 B 时电极夹转换到图上的 B-B 对角,如果测试中

土模名称: TEST				创建新测试点		
数量修改测点参数						
1		湿密度:	1.86		(g/cm3)	
3		含水量: [13.54		(%)	
		FIT1:		FIT2:		
删除	曲线	■ 启用/停用		保存	返回	
		图3.5				

点击终止按钮则退出测试界 面。仪器采集完成自动存储电 子数据,然后把 EDG 土钉取出 后,在测试点中间的土壤上进 行土工测量实验(如:灌沙、

环刀)。以此测试3个不同位置的的点。

当 EDG 测试完成后,土工 测量实验(如:灌沙、环刀)

中包含的物理数据将会输入到仪器对应的测试点中和电子数据结合(图 3.5)

当具有相同土壤类别的三个或更多测试点的电子和物理数据结

合后,点击保存按钮,这个土 模就建立完成,可以正常使用。 也可以点击曲线按钮查看建立 的曲线(图3.6)通过点击(启 用/停用)按钮把不好的测试点 关掉来增加曲线的拟合系数。

3.3 工程测试

点击<u>工程测试</u>菜单跳转至 工程测试界面(图 3.7),点击 新建按钮创建一个工程名称, 工程名称创建完成,点击关联 土模按钮(图 3.8),选择左边 的工程信息在选择右边对应的 土模信息(选中后会变成蓝色 的背景),点击关联土模界面自 动返回到(图 3.7)。

图3.8

土模:

选择建立好的工程对应的

土模,点击确认按钮进入工程测试界面如图 3.4。点击测试 A 按钮时 电极夹连接图上的 A-A 对角,点击测试 B 时电极夹转换到图上的 B-B 对角,两点测试完成直接显示测试结果(图 3.9).如果测试中点击 终止按钮则退出测试界面。

工程:

工程	土模	
TEST	TEST	
测试结果		
湿密度:g/cm³	1.85	
含水量:%	12.153	保存
干密度:g/cm³	1.649	
压实度:%	95.886	返回
	图3.9	

点击保存按钮保存所测的数据, 点击返回按钮则不保存直接返 回上一界面。

3.4 查看数据

点击查看数据菜单,进入数据列表(图 10),选择左边 框的工程名称,选中后颜色会 变成蓝色,可以点击查看数据 接钮查看该工程下所保存的

数据。点击删除数据则把该工程的所有数据全部删除掉。也可插上配置的 U 盘等待几秒,点击导出数据把选中的数据导入到 U 盘中。

3.5 设置

在设置菜单中可以查看日期、时间、版本号、电量、温度几项, 如需英文界面在语言菜单选项里选择"CH/EN"在点击保存按钮即可 显示中文/英文界面。

第四章配件清单

序号	名称	数量
1	无核仪主机	1
2	温度传感器	1
3	U 盘	
4	电极夹连接线	2
5	钢针	4
6	锤子	1
7	测试模板	1
8	充电器	1
9	说明书	1
10	保修卡	1
11	合格证	1
12	仪器外防水箱	1

配置清单