

ZBL-R63D 混凝土钢筋检测仪 使用说明书

目 录

本说明书中的约定IV						
第 1章	概述1					
1.1	简介1					
1.2	主要功能及特点1					
1.3	主要技术指标1					
1.4	注意事项3					
1.4.1	使用说明书3					
1.4.2	工作环境要求:4					
1.4.3	存储环境要求4					
1.4.4	其他要求4					
1.5	仪器的维护及保养 5					
1.5.1	电源5					
1.5.2	使用前检查5					
1.5.3	清洁5					
1.6	责任6					
第 2章	仪器描述 7					
2.1	仪器组成					
2.1.1	主机					
2.1.2	传感器9					

L

	2.1.3	路径装置	9
第	3章	菜单介绍	10
	3.1	开机	10
	3.2	普通测试	10
	3.2.1	参数设置	11
	3.2.2	普通测试界面	15
	3.2.3	普通测试步骤	17
	3.3	网格扫描	20
	3.3.1	参数设置	21
	3.3.2	网格测试界面	22
	3.3.3	网格测试步骤	24
	3.4	剖面扫描	31
	3.5	数据显示	33
	3.5.1	普通测试的数据查看	34
	3.5.2	网格数据查看	34
	3.5.3	剖面数据查看	36
	3.6	数据删除	36
	3.7	系统设置	37
第	4 章	快速操作指南	38
	4.1	测试前准备	38
	4.2	钢筋定位和保护层厚度测量	40
	4.2.1	一般操作	40
	4.2.2	定位钢筋	41

<

4.2.3	定向钢筋	42
4.2.4	测量保护层厚度	42
4.2.5	存储保护层厚度测量值	44
4.3	密集钢筋测量	44
4.4	最小保护层厚度测量	46
4.5	钢筋直径测量	46
4.6	钢筋测量的一般原则	47

本说明书中的约定

- 1. 灰色背景、带黑色方框的文字
- 2. 表示界面上的一个按钮,如:确定钮。
- 3. 仪器面板上的按键均用【】表示,如:【存储】键。
- 白色背景、带黑色方框的文字表示 Windows 软件菜单命令, 其中"→"表示菜单级间的分割符,如文件→打开表示文件 菜单下的打开菜单项命令。
- 灰色背景、不带方框的文字表示屏幕上选项或菜单名称。如 选择参数设置中的构件选项。
- 6. 标志 《 为需要特别注意的问题。
- 除了本说明书中介绍的内容之外,用户在使用仪器的过程中, 会自动显示一些提示信息,请按提示信息操作。
- 本说明书中的软件界面及照片仅用作示意,随着软件升级和
 产品的不断改进可能会发生变化,恕不另行通知。

第1章 概述

1.1 简介

ZBL-R630 混凝土钢筋检测仪, 是一种便携式无损钢筋测量 仪器, 能够在混凝土表面测量钢筋位置、钢筋直径和混凝土保护 层厚度, 测量钢筋位置、走向及分布。

1.2 主要功能及特点

- 1) 确定钢筋位置、走向及分布;
- 2) 测量钢筋的保护层厚度;
- 3) 测定钢筋直径;
- 4) 存储钢筋位置、分布及保护层厚度;
- 5) 显示构件编号内保护层厚度的统计数据;
- 6) 存储数据传输至计算机;

1.3 主要技术指标

 保护层厚度测量范围(钢筋直径Φ6mm~Φ 50mm):

钢筋直径	第一量程	第二量程		
Φ6~Φ8螺纹钢	6~70	10~100		

表 1.1 保护层厚度测量范围(单位:mm)

钢筋直径	第一量程	第二量程
Φ10~Φ18 螺纹钢	9~78	16~124
Φ20~Φ22 螺纹钢	10~84	18~130
Φ25~Φ28 螺纹钢	12~84	22~150
Ф32~Ф36 螺纹钢	12~86	22~150
Φ40 圆钢筋	12~90	25~170
Φ50 圆钢筋	12~90	26~180

续表 1.1 保护层厚度测量范围(单位:mm)

2. 保护层厚度最大允许误差:

表 1.2 保护层厚度最大允许误差(单位: mm)

最大允许误差	第一量程	第二量程
± 1	6~57	10~77
±2	58~68	78~118
±4	69~90	120~180

3. 直径测量范围

♦6mm~ ♦32mm (详见表 5.2)。

4. 钢筋直径最大允许误差

表 1.3 钢筋直径最大允许误差(单位:mm)

钢筋	6	0	10	10	1.1	16	10	20	22	25	20	22
直径	0	0	10	12	14	10	10	20	22	20	20	32
最大	- 0	±	±	±	±	±	±	±	+3	±	+4	4
误差	+2	2	2	2	2	2	2	2	-2	3	-3	-4

5. 数据存储容量

可存储 1600 个单测点构件。

6. 电池

6节5号南孚电池,供电时间约32小时;6节5号镍氢充电 电池供电时间约16小时。

從○ 注意:供电时间是在 25℃环境温度下使用 5 号南孚碱性(1200mAh)电池时测量结果。如果用户使用其它品种电池或在其它温度环境下使用时,可能与上述时间有差异。

7. 体积重量

- a) 仪器体积: 190mm×135mm×52mm
- b) 仪器重量: 560g(不带电池)
- c) 传感器体积: 73mm×93mm×35mm
- d) 传感器重量: 135g
- e) 路径装置重量: 186g

1.4 注意事项

1.4.1 使用说明书

为了更好地使用本检测仪,请您在使用仪器前仔细阅读使用说明书。

1.4.2 工作环境要求:

环境温度:-10℃~40℃

相对湿度: <90%RH

不得长时间阳光直射

防腐蚀:在潮湿、灰尘、腐蚀性气体环境中使用时,应采取 必要的防护措施。

1.4.3 存储环境要求

环境温度: -20℃~+60℃

相对湿度: <90%RH

不用时请将仪器放在包装箱中,在通风、阴凉、干燥环境下 保存,不得长时间阳光直射。

若长期不使用,应定期通电开机检查。

1.4.4 其他要求

- 1.4.4.1 避免进水。
- 1.4.4.2 避免磁场

避免在强磁场环境下使用,如大型电磁铁、变压器附近。

1.4.4.3 防震

在使用及搬运过程中,应防止剧烈震动和冲击。

1.5 仪器的维护及保养

1.5.1 电源

本仪器采用6节**5号碱性电池**进行供电,使用时请注意电量 提示,如果电量不足时,则应尽快关机并更换电池,否则可能会 造成突然断电导致测试数据丢失甚至损毁系统。

注意:安装电池时,注意电池极性,不可装反!必须安装6节5号电池!否则仪器将无法正常工作!

1.5.2 使用前检查

使用前请将仪器接好传感器,开机测试,如果电量过小,仪 器会鸣响三次,然后长响,此时必须更换电池或放到充电器上充 电;如果仪器无故出现异常现象,对照说明书仍未解决问题,请 与提供商联系。

1.5.3 清洁

每次使用完本仪器后,应该对主机、传感器等进行适当清洁, 以防止水、泥等进入接插件或仪器,从而导致仪器的性能下降或 损坏。

注意:请勿将仪器及配件放入水中或用湿布擦洗!
 注意:请勿用有机溶剂擦洗仪器及配件!
 请用干净柔软的干布擦拭主机。
 请用干净柔软的毛刷清理插座。

1.6 责任

本仪器为精密检测仪器,当用户有以下行为之一或其它人为 破坏时,本公司不承担相关责任。

(1)违反上述工作环境要求或存储环境要求。

(2)非正常操作。

(3)在未经允许的情况下擅自打开机壳,拆卸任何零部件。人为或意外事故造成仪器严重损坏。

第2章 仪器描述

2.1 仪器组成

2.1.1 主机

2.1.1.1 键盘

键盘位于主机上面板,各键的功能如表 2.1 所示。

键名	功能说明				
【菜单】	返回主菜单界面				
【存储】	存储参数或检测数据				
【返回】	返回上一级				
【确定】	对某操作进行确认				
[▲]	上移光标;调整参数;测量钢筋直径				
[▼]	下移光标;调整参数;切换测量方式				
[]	左移光标;切换存储方式				
[▶]	右移光标;切换量程				

表 2.1 功能键一览表

2.1.1.2 传感器接口

测试前通过专用信号线与传感器相连。

2.1.1.3 路径装置接口

网格或剖面测试时,通过专用信号线与路径装置相连。

2.1.1.4 显示屏

安装在仪器上面板,用于显示操作界面及检测数据等。

2.1.1.5 电源开关

用于打开/关闭仪器电源。

2.1.1.6 USB 接口

通过 USB 连线与计算机 USB 接口相连, 可将仪器内部存储的数据传输到计算机。

2.1.2 传感器

该传感器采用一体化设计,能够完成第一、二两个量程的保 护层厚度测量和直径测量功能。量程可以用【▶】键切换;按【▲】 键进行直径测量。

传感器具有指向性,当传感器轴线与钢筋走向平行时最灵敏, 反之,当传感器轴线与钢筋走向垂直时探测信号最弱;所以,在 测量钢筋时,应保持传感器轴线与钢筋走向平行,在垂直于钢筋 走向的方向移动传感器进行扫描测量。

第二量程的使用:一般只有在保护层厚度接近或超过第一量 程测量的最大测量范围时才使用,因为在第二量程测量时,仪器 对并排钢筋分辨能力小于第一量程。

2.1.3 路径装置

路径装置可以实时、准确地记录传感器移动的位移量。用户 在操作时可以根据情况前进扫描钢筋、后退擦除钢筋。该部分会 在 4.2.3.4 节中详细介绍。

注意:带着路径装置测量时,测量速度最好不要超过40mm/秒,否则会影响保护层测量的精度。如果是在密集"三"方式下测量,测量速度不能超过15mm/秒。

第3章 菜单介绍

3.1 开机

将传感器安装在路径装置上,并用信号线与主机连接好,然 后按下【⁽¹⁾】键,主机上电开始工作。几秒钟后,屏幕显示开机 界面,显示公司名称、仪器型号、

名称、版本号、电池剩余电量、当 前日期等信息,如图 3.1 所示。

当电池剩余电量不足时,电量 条闪烁三次,且伴有鸣响,提示用 户电量不足。

如果仪器自检正常,约5秒钟 图 3.1 开机界面 后,自动进入菜单界面(如图 3.2 所示),该界面用来选择测量功能、设置测量参数以及进行数据查 看、传输和删除操作。

3.2 普通测试

10

"普通测试"是 R630 的最基 本的一种测试功能。使用该功能可以 较为精确的测出钢筋保护层厚度、钢 筋直径,判断是否超标等。同时"普 通测试"也是"剖面扫描"和"网格

图 3.2 主菜单界面

北京智博联 ZBL-R630 混凝土钢筋检测仪 ^{Vers 01.01} 电量: _______ 时间: 2014-10-12

2/U#NJ示吧里、ヨ 北京智 1图 3.1 所示。 Z B L -3量不足时,电量 混凝土钢 活鸣响,提示用 Vers 0 电量:■■ 时间, 2014

扫描"功能实现的基础。

用信号线将传感器与主机连接好,在图 3.2 主菜单界面按【▲、 ▼】键,将■移至"普诵测试"选项前面,按【确定】键讲入"普 通测试"功能,出现参数设置界面(图 3.3),此时光标停留在"预 设直径"位置。

进入参数设置时, 会进行电池电量检测, 如果**电量极为不足** 时,仪器会短鸣三次,然后在屏幕右下角闪烁"空电池"的图标, 如图 3.3 所示。此时用户不应继续任何设置或测试,否则数据易 丢失或出错,此时**应该马上退出检测界面,回到主菜单界面后关** 机、并更换电池。

3.2.1 参数设置

进入该图 3.3 所示的界面后,仪 器处于参数选择状态。按【▲、▼】 键选择需要设置的参数项(该项左侧 的方框变黑■),按【确定】键启动相 应的参数设置功能。此时,参数处出 现光标,即可按下述各参数的定义及设 置方法设置该参数。所有参数设置完后 按【返回】键进入图 3.6 所示的测试功 能界面;或者按【菜单】键直接返回主 菜单。

图 3.3 普通测试参数设置

	参数设置	1
	构件编号	<u>*</u> ****
	预设直径	16 mm
	设计厚度	25 mm
	构件类型	板
0 1	2 3 4 5 6	789
A B	CDEFG	НІЈ
ΚL	MNOPQ	RST
U V	W X Y Z +	- # /

图 3.4 构件编号设置

3.2.1.1 构件编号

构件编号可以由六位数字、字母或符号混合组成。出厂默认 构件编号为000000。重新开机进入参数设置界面时,默认构件 编号为已存储的最后一个构件编号的末位增加一位(增加的顺序 按图 3.4 所示的软键盘排列顺序直至末位符号为"/"为止),例如: 存储的最后一个构件为 300009,则重新进入参数设置界面时, 默认的构件编号为 30000A。

在图 3.3 界面上按【▲、▼】键将光标调至"构件编号"处, 按【确定】键,出现图 3.4 所示的界面,此时光标处于构件编号 的左起第一个字符下方,按【◀、▶】键调整至任意一位需要修改 的字符处,再按【▼】键,下方软键盘左上角出现光标,按【◀、 ▶、▲、▼】键选择需要输入的字符,按【确定】键,该字符出 现在构件编号光标位置上,同时构件编号处的光标自动下移一位, 软键盘上的光标消失。若继续修改,则按上述方法进行重复操作。 当构件编号修改完毕,按【存储】键存储该编号,该构件编号处 光标消失,并自动返回到图 3.3 所示的参数设置界面。

3.2.1.2 预设直径

设定被测钢筋的直径,可设置范围为6~50mm,默认值为 上一次存储构件的设定值。进入该功能后,按一次【▲】或【▼】 键可以将该值增大或减小1个钢筋规格,长时间按【▲】或【▼】 键,该值连续增大或减小。设定完毕,按【存储】键存储,该处 光标消失,并自动返回到图3.3所示的参数设置界面。

3.2.1.3 设计厚度

设定被测钢筋的设计保护层厚度,可设置的范围为 10~ 99mm,默认值为上次存储的构件的设定值。进入该功能后,按 一次【▲】或【▼】键可以将该值增大或减小 1,长时间按【▲】 或【▼】键,该值连续增大或减小。设定完毕,按【存储】键存 储,该处光标消失,并自动返回到图 3.3 所示的参数设置界面。

3.2.1.4 构件类型

被测构件的类型,分为:"梁"、"板"两种。按【▲、▼】键 在"梁"、"板"之间切换。该项用于根据建筑类型自动判断测得 的厚度值是否超标。

3.2.1.5 最小厚度

设置快速普查时被测钢筋所允许的最小保护层厚度;范围为 0~100,默认值为0mm。该功能在使用时(设置不为0的数值), 若检测到被测钢筋的保护层厚度小于该设定值时,仪器报警、提 示,而并不显示、存储被测保护层厚度。进入该功能后,按一次 【▲】或【▼】键可以将该值增大或减小1,长时间按【▲】或 【▼】键,该值连续增大或减小。设定完毕,按【存储】键存储, 该处光标消失,并自动返回到图3.3所示的参数设置界面。**当该** 参数设置为0时,关闭此功能。

3.2.1.6 数据修正

为减小相邻并排钢筋对被测钢筋的保护层厚度测量值的影响,可通过设定相邻钢筋到被测钢筋的中心距,仪器对测试结果值自

动进行修正,提高测试精度。分为"手动"、"无"两种选项,开 机默认为"无",表示不进行修正;"手动"表示按人工设定的相 邻钢筋**中心间距**进行修正,并显示修正后的测量结果。

进入该功能后,按【▲、▼】键可在"手动"、"无"之间切 换;如果选择了"手动",则右边出现数值可输入项,范围为50~ 110mm。按【▶】键可将光标移动到数值处,按一次【▲】或【▼】 键可以将该值增大或减小1,长时间按【▲】或【▼】键,该值 连续增大或减小。设定完毕,按【存储】键存储,该处光标消失, 并自动返回到图3.3 所示的参数设置界面。使用该功能并不能完 全消除相邻钢筋对测试结果的影响!

3.2.1.7 路径装置

该选项表明在普通测量时也 可以将传感器装在路径装置上测 量(见图 3.5),此时"路径装置" 这个选项要选择"有",否则会影 响保护层厚度测量的精度。若该项 设为"无"表示不用路径装置只用

图 3.5 主机-传感器-路径装置

传感器(建议用户在普通测量时不使用路径装置)。

在图 3.3 所示的"参数设置"界面按【返回】键,保存设置 并进入图 3.6 所示的测试界面。如果在"参数设置"界面按【菜 单】键,则返回到主菜单。

15

3.2.2 普通测试界面

在图 3.6 所示的测试界面,按【返回】键,则返回到图 3.3 所示的参数设置界面;按【菜单】_{信号值 滚动条 超标提示} 键,回到图 3.2 所示主菜单界面。

3.2.2.1 滚动条

提示当前传感器与钢筋的相 对距离。

- 空白 -- 传感器有效感 应范围内无钢筋。
- 2) 增长 -- 传感器正在向 靠近钢筋的方向移动。

3) 缩短 -- 传感器正在向远离钢筋的方向移动。

3.2.2.2 信号值

当前传感器接收到的信号幅度值,信号值越大,传感器离钢 筋越近。

3.2.2.3 当前厚度

当前传感器与钢筋相对位置的等效值(单位mm),该值越大 传感器离钢筋越远,当等效值超过传感器测量范围时,该值显示0, 当前厚度的最小值即为保护层厚度值。(如果用户启用了数据修正 功能,该值只显示测量值,不显示修正后的值)。

3.2.2.4 保护层

显示自动锁定的混凝土保护层厚度测量值 (单位 mm)。(如

果用户启用了数据修正功能,保护层厚度则显示测量修正后的值)。

3.2.2.5 钢筋直径

显示被测的钢筋直径测量值 (单位 mm)。按【▲】键进行直径及保护层厚度测量 (此时不需输入被测钢筋直径)。

屏幕显示: (见图 3.9 直径测试)

- 1) 保护 层▶***(实测钢筋直径的保护层厚度值)
- 2) 钢筋直径 ** (实测的钢筋直径)

3.2.2.6 存储数

当前构件编号中已存储的保护层厚度值个数。

3.2.2.7 合格率

当前构件中已存储的所有厚度值符合规范(GB50204-2002) 要求的合格点的比例。

3.2.2.8 超标提示

当测试的保护层厚度超过规范要求的范围时,出现"!"符号 提示,否则为空白。

3.2.2.9 构件名

16

显示当前的构件编号。

3.2.2.10 状态信息栏

- 1) 用 和□分别代表第一、第二量程;
- 存储方式:用"A"和"M"分别代表"自动存储"和"手动存储";

 测量方式:用"三"和空白,分别代表选择"密集钢筋 测量方式"和"一般测量方式";修正方式用"C"和 空白分别表示有、无修正。

3.2.3 普通测试步骤

3.2.3.1 参数设置

操作方法参见 3.2.1 节 "参数设置"。

3.2.3.2 复位

方法一:在参数设置界面(图 3.3),将传感器拿在空中,远 离铁磁体。按【返回】键,进入图 3.6 所示的测试界面,仪器自 动进行传感器复位操作——约 3 秒钟后测试界面屏幕提示当前厚 度显示为"0",复位工作完成,进入测量等待状态。

方法二:在图 3.6 所示的测试界面,将传感器拿在空中,远 离铁磁体。按【确定】键,仪器自动进行传感器复位操作,当前 厚度处显示空白,约3秒钟后测试界面屏幕提示当前厚度为"0", 复位工作完成,进入测量等待状态。

₩₩ 注意:

1) 在检测过程中应每隔 10 分钟左右进行一次复位操作。

2) 对测量数据有怀疑时,也可进行复位后再次测量。

3.2.3.3 热键功能

在测试界面有以下几个功能,可以通过快捷键来进行操作并 执行相应的功能。

1. 量程选择

选择仪器的量程,分为第一、二两个量程。其中,第一量程, 用于被测保护层的厚度较小的场合;第二量程,用于被测保护层 厚度较大的场合,分别用**■**和□表示。

在图 3.6 所示的测试界面,按【▶】键进行切换,状态标示 栏的相应位置处显示■或□。每次进入该界面,默认为"第一量程"。

2. 存储方式

选择测试结果的存储方式,分为手动和自动存储两种,分别用"A"和"M"标记。手动存储——按【存储】键时,仪器才存储保护层厚度及钢筋直径的测量值;自动存储——仪器自动将保护层厚度测量结果保存在当前构件内。

在图 3.6 所示的测试界面,按【◀】键进行切换,状态标示 栏的相应位置处显示"A"和"M"。开机默认为"手动存储"。

3. 测量方式

18

仪器对密布钢筋分辨能力的选择,分为"一般测量方式"和 "密集钢筋测量方式"。分别用空白和三表示。

在图 3.6 所示的测试界面,按【▼】键进行切换,状态标示 栏的相应位置处显示"三"或空白。开机默认为"一般测量方式"。

3.2.3.4 确定钢筋位置、走向及保护层厚度

如图 3.7 所示,将探头放置于被测混凝土表面,与被测钢筋 平行,沿一个方向匀速移动传感器,当探头离钢筋越来越近时,

滚动条逐渐加长,信号值越来越大,当前厚度值减小(图 3.8 (a));

探头越过钢筋时自动锁定钢筋保护层厚度值(图 3.8 (b))。

如存储方式设置为"自动存储",则 仪器自动存储测量的保护层厚度值, 同时存储数自动加1;如存储方式设 置为"手动存储",则当仪器锁定保 护层厚度后,按【存储】键,存储测 量的保护层厚度值,同时存储数自动 加1。探头越过钢筋时蜂鸣器报警,

图 3.7 测量示意图

提示已经找到钢筋,且传感器已经越过该被测钢筋。

图 3.8 钢筋测试

精确判定钢筋位置及走向:

- 反方向移动探头,找到当前厚度值最小的位置,使当前 值与保护层厚度值一致,此时探头位置即为钢筋所在的 准确位置(图 3.8 (c));
- 2) 旋转探头,使得信号值最大,此时探头走向即为被测钢
 筋走向(图 3.8 (d))。

3.2.3.5 测量钢筋直径

- 1) 依据 3.2.3.2 节"复位"的方法
 二,进行传感器的复位操作;
- 农据 3.2.3.4 节的方法,精确判 定钢筋位置;
- 将传感器放置在被测钢筋的正 上方,并与被测钢筋平行;按下 【▲】键,约2秒钟后直径测量 结果直接显示在钢筋直径的显 示位置;仪器同时测量保护层厚质

图 3.9 钢筋直径测试

示位置; 仪器同时测量保护层厚度值,显示在保护层显示值位置上,如图 3.9 所示,此时如果按下【存储】键,则保存直径值和保护层厚度,存储数自动增加 1。

3.3 网格扫描

网格扫描功能主要是用网格示意图的方式,显示被测网状钢筋的布筋情况,同时显示出每根被测钢筋的位置及保护层厚度。 其测试方法如下:

将路径装置、传感器与主机连接好, 然后在主菜单界面按【▲、▼】键,将 ■调至"网格扫描"功能处,按【确定】 键进入扫描测试,出现图 3.10 所示的 参数设置界面,进行参数设置。

参数设置	
构件编号	*****
预设直径X	16 mm
设计厚度X	25 mm
预设直径Y	16 mm
设计厚度Y	25 mm
构件类型	板
数据修正	手动
最小厚度	0 mm

此时,系统先检测**电池电量**(详见 3.2节"普通测试"中的电量检测部分)。

图 3.10 参数设置界面

3.3.1 参数设置

设置方式同 3.2.1 节对应的部分。同样是按【▲、▼】键调 整■到要设置的选项前面,按【确定】键选中该项,出现光标,按 【▲、▼】键调整数据或切换项,最后按【存储】键保存该设置 并退出此项。

3.3.1.1 预设直径 x

X 方向扫描的待测试钢筋的直径。设定范围从 6~50mm, 默认值为上一次存储构件的设定值。详细设定方法参见 3.2.1。

3.3.1.2 预设直径 y

Y 方向扫描的待测试钢筋的直径。设定范围从 6~50mm, 默认值为上一次存储构件的设定值。详细设定方法参见 3.2.1。

3.3.1.3 设计厚度 x

X 方向待测试钢筋的设计保护层厚度,设定范围从 10~ 99mm,默认值为上一次存储构件的设定值。详细设定方法参见

3.2.1

3.3.1.4 设计厚度 y

Y方向待测试钢筋的设计保护层厚度,设定范围从10~ 99mm,默认值为上一次存储构件的设定值。详细设定方法参见 3.2.1。 当前厚度

3.3.1.5 数据修正

设置修正方式(该参数的定义 参见3.2.1)分为"自动"、"无" 两种,开机默认为"无"。其中"自 动"表示仪器按其测量的保护层厚 度和钢筋间距自动进行修正; 重新 图 3.11 测试界面 进入设置时默认值为上一次设置值。

在参数设置界面按【返回】键,设置保存,同时进入图3.11 所示的网格测试界面。

₩<>> 注意・按【返回】键的同时,将传感器拿在空中,远离 铁磁体。

若在测试界面处按【返回】键,可返回到图3.10所示的参数 界面,可讲行参数设置。

3.3.2 网格测试界面

图 3.11 所示界面的内容及定义如下:

3.3.2.1 滚动条

提示当前传感器与钢筋的相对距离,滚动条上的数字表示当 前厚度,这一点与普通测试的数据含义略有不同。

- 1) 空白 —— 传感器有效感应范围内无钢筋。
- 2) 增长 —— 传感器正在向靠近钢筋的方向移动。
- 3) 缩短 —— 传感器正在向远离钢筋的方向移动。

3.3.2.2 当前厚度

其定义详见 3.2.2。

3.3.2.3 坐标位置

X、Y每屏可测长度为1米,超过1米翻页,对应该方向页 数加1。每屏中显示的钢筋位移是相对于该屏(1米)内的坐标, 以厘米为分度。如x方向扫到2.6米时发现一根钢筋,结果显示 为:x02,钢筋上方坐标为60(cm)。其显示方式与刻度尺同理。

3.3.2.4 方向

表示传感器的扫描方向,"→"、"↓"分别代表 X 方向、Y 方向扫描。

3.3.2.5 构件编号

显示已设定的构件编号。

3.3.2.6 钢筋直径

显示已设定的当前方向的钢筋直径。

3.3.2.7 状态信息栏

显示量程、显示方式、测量方式、修正设置等内容,其描述 及热键功能请参见 3.2.2 及 3.2.3.3 普通测试的相关内容。仅有以 下两点与普通测试的不同:

1) 扫描方式下只提供自动存储方式,即"A"。

2) "C"代表自动数据修正。

3.3.3 网格测试步骤

3.3.3.1 参数设置

其参数定义及操作方法参见 3.3.1 节。

3.3.3.2复位

方法一:在参数设置界面(图3.10),将传感器拿在空中, 远离铁磁体。按【返回】键,进入图3.11所示的测试界面,仪 器自动进行传感器复位操作——约4秒钟后测试界面屏幕提示当 前厚度为"0",复位工作完成,进入测量等待状态。

方法二: 在图 3.11 所示的测试界面时将传感器拿在空中, 远 离铁磁体, 按【确定】键, 传感器复位——约 3 秒钟后测试界面 右上角提示当前厚度为"0", 复位完成, 进入测量等待状态。

初次进入图 3.11 所示测试界面,复位后,仪器可进行预扫描。

3.3.3.3 预扫描

预扫描的目的就是通过初步扫描 X、Y 方向钢筋的大致分布, 确定 X、Y 方向扫描的**测线**方向及扫描的起点(扫描坐标的零点)。

仪器在图 3.11 所示的测量界面,可对被测钢筋的位置进行测

试。当传感器与被测钢筋的相对位置 发生变化时,滚动条上方显示当前厚 度变化;当传感器越过被测钢筋上方 时,仪器发出短促的鸣笛声,但界面 上不画钢筋,也不存储被测钢筋的测 试数据。

如图 3.12 所示,首先在预定扫描 起始的区域,通过上述方法,测试 X

图 3.12 预扫描示意图

方向的 2~3 根钢筋的位置;然后测试 Y 方向的 2~3 根钢筋的位置。第一、二根 X、Y 方向钢筋交叉区域的中心(图 3.12 所示的"0"点),可作为扫描的起点。

3.3.3.4 选择测试方向

在扫描测试之前,需要选择扫描测试的方向是 X 方向还是 Y 方向。

图 3.11 所示的界面下按【▲】键进行 X 方向、Y 方向切换, 右下角会出现对应的方向标记"→"或"↓",同时状态栏中的预 设直径也随着选择方向的改变对应切换成 X 方向预设直径或 Y 方 向预设直径,可以参见图 3.14、图 3.15。

3.3.3.5 网格扫描

若开始选择的是 X 方向,将传感器放置在预扫描时所确定的坐标零点位置(图 3.12 中所示的起始点),与被测 Y 方向钢筋平行。

按下【存储】键,原点处会出现 一个方块型光标(以下简称传感器光 标),指示传感器的当前位移(该位移 是相对于该页中坐标点的相对位移)。此 时可以开始对 X 方向扫描测试,见图 3.13。

匀速移动传感器,当传感器离钢筋 越来越近时,滚动条逐渐加长,右上角 的当前厚度值减小;当传感器越过钢筋

图 3.13 X 方向扫描测试

图 3.14 X 方向翻页测试

时,蜂鸣提示,并在相应的坐标处显示测量的钢筋(用粗线表示, 如图 3.13 所示),在钢筋的上方显示被测钢筋保护层厚度值和被 测钢筋的坐标(钢筋距离测量起点的距离,单位: cm。),同时存 储测试结果。

同样,传感器继续向前移动,仪器不断测试到被测钢筋,在 相应的坐标位置处,显示测试的钢筋及测试数据。

当扫描距离超过每屏显示的范围时,自动翻页测量,如图 3.14 所示。此时 X 坐标上自动加 1 代表已翻过一页。依此类推, 直至 X 方向测试完毕,按【存储】键结束存储状态,此时光标消

失。

按【▲】键切换至另一方向。路径 传感器自动清零,状态栏显示 Y 方向的 预设直径和方向标记。仍然按【存储】 键开始扫描,这时会同时显示出 X 方向 扫描出的第一屏数据。

Y方向的测试、翻屏测试均与X 方向的操作相同。Y方向每次翻屏显 示时都会同时显示X方向的第一屏数 据,如图3.16所示。Y方向的钢筋都 是用细线表示的。再次按【存储】键 结束扫描。

图 3.15 Y 方向扫描测试

在测试过程中,当测试的保护层厚度超过规范要求(以设计 厚度为基准,根据 GB50204-2002 计算出上、下限)的范围时, 出现"!"符号提示,否则为空白。

如果不进行进"二次扫描"则按【返回】键回到参数设置界 面,也可按【菜单】键返回至主菜单。

复测:在测试界面上,若发现某一测试数据有误,则将探头 沿原来测试方向的反向运动,回退到错误数据的钢筋前面,此时 回退范围内的已测数据及显示的钢筋图像全部清除,然后沿原测 试方向继续测试,即可进行复测操作,覆盖原有的测试结果。

《《《》注意:带着路径装置测量时测量速度最好不要超过 40mm/秒。如果在密集钢筋测量方式下,测量速度不能超过

15mm/秒。

3.3.3.6 二次扫描

该功能是在网格扫描基础上通过对一个(或两个)测试方向 进行多条测线的扫描得出钢筋的真实分 布。

具体操作:

第一步,如前所述完成预扫描,确 定钢筋的大致走向及起始点位置。

第二步,按3.3.3.4 所述在X、Y 方向上各完成一次扫描。如果是先进行 的X方向扫描,后进行的Y方向扫描, 则完成后的状态应该如图3.17 所示。

第三步,重新选择一个方向,准备 进行二次扫描。按【▲】键切换X、Y 方向,本例中我们假定要进行X方向的 扫描。

第四步,根据一次扫描(即第 二步的 X、Y 两方向的扫描)的钢 筋位置,在 Y 方向测得的第二根和 第三根钢筋的中间位置进行第二次 扫描(如图 3.20 中 b2 的测线),即 按下【存储】键开始测量,此时界面

扫描(如图 3.20 中 b2 的测线),即 图 3.19 × 方向二次扫描翻屏显示 按下【存储】键开始测量,此时界面上出现了光标。扫描操作与 一次扫描完全相同,二次扫描完成后如图 3.18 所示。

说明:

1)二次扫描仍显示一次扫描出的X、Y的钢筋分布界面(但 不会显示每根钢筋的坐标:位置及保护层厚度);

2)二次扫描中扫描到钢筋后只显示其坐标,不再画筋,如图3.18 所示。

第五步,扫描距离超出一屏可显 示的距离时,仪器自动翻到第二屏, 如图 3.19 所示,相应的,左上角的坐 标原点自动加 1。用户可在此界面上 继续进行扫描操作,不断的扫描-翻页 -扫描,扫描的最大距离不能超过第 二步中在该方向进行一次扫描所测 试的最大距离。

第六步,如果 Y 方向上测试的 第二根、第三根筋间扫描完毕后按 【存储】键结束此次扫描。

第七步,同理在 Y 方向测得的第三根和第四根钢筋的中间位 置进行二次扫描(如图 3.20 所示 b3 的测线),依此类推。

第八步,X方向的二次扫描全部完成后,按【▲】键切换至 另一方向,本例中应切换到Y方向。

第九步,Y方向的二次扫描原则与X方向的相同,依次进行 X方向上一次扫描出的第二根与第三根筋之间的二次扫描;第三 根与第四根筋之间的二次扫描...直至扫描第m-1根筋与第m根 筋之间的空档。这里的m是一次扫描中在该方向所扫到的最后一

根筋,如图 3.21 所示。

Y方向的二次扫描界面可参见图 3.22:图(a)是Y方向开始 扫描的状态;图(b)是Y方向翻屏扫描的状态。

说明:图 3.20 中 X 方向扫描都是从最左边第一条线(细线示意)为起点向右扫描;图 3.21 中 Y 方向扫描都是从最上面第一条水平线(细线 示意)为起点向下扫描。

上述操作完成后,将测量数据传输 到计算机中,Windows 分析软件根据测 量数据进行分析,并显示钢筋的实际分布 状态,如图 3.23 所示。

以上介绍的二次扫描方法是比较规范的操作方式,用户也可 以不用逐一的在相邻的两筋之间扫描,可以跨筋扫描。跨筋扫描 就是各 X、Y 方向上根据上述二次扫描的原则任选一条测线分别 进行二次扫描,但需要人工记录同方向上二次扫描与一次扫描两

根测线间的间距,以备 windows 软件分析之用。关于 windows 软件的使用,用户可参阅《钢筋数据处理软件使用手册》。

《《》 注意:在跨筋二次扫描选择测线时,要尽量远离同方向 一次扫描的测线!

跨筋扫描这种操作从严格意义上讲所呈现的实际分布图跟前 面所介绍的规范的二次扫描操作所得到的实际分布图会有一点差 异。**建议用户尽量采用规范的二次扫描方式。**

3.3.3.7 热键功能

在网格扫描的测试状态中,有量程选择及测量方式两种按键 功能,其定义及操作方法参见 3.2.3.3。

3.4 剖面扫描

"剖面扫描"是以断面分布图的方 式,显示被测钢筋的位置及保护层厚度 的一种测试功能。

在主菜单界面按【▲、▼】键,将 ■调至"剖面扫描"功能处,按【确定】 键进入剖面测试功能,出现图 3.24 所 示的参数设置界面,进行参数设置。

此时,系统先检测电池电量(详见 3.2节"普通测试"中的电量检测部分), 并在仪器电池电量低的时候进行提示。

图 3.24 剖面参数设置

图 3.24 为参数设置界面,参数设置项及设置方式与普通测试

相同,但数据修正的设置与网格扫描相同,详细定义及操作见 3.2.1 和 3.3.1 节。

参数设置完毕,按【返回】键保存参数进入图 3.25 所示的界面。

《 注意:按【返回】键的同时,将传感器拿在空中,远离 铁磁体。

图 3.25 中间位置的水平实线表 示设计厚度值,上下两条虚线表示保 护层厚度上限和下限值(上下限是根 据用户设定的构件类型(梁/板)及 GB50204-2002 计算而得的)。

当仪器显示的当前厚度值为0时, 仪器复位操作完成,此时可以进行预

扫描(参见 3.3.3.3 节中的说明),也可以按【存储】键,进入测 试状态 (左上角出现一个方块型传感器位置提示的光标),测试时 匀速移动传感器,当传感器离钢筋越来越近时,滚动条逐渐加长, 当前厚度值减小;当传感器越过钢筋时,蜂鸣提示,并在相应的 坐标处显示测量的钢筋 (用黑色圆点表示,如图 3.26 所示),在 钢筋的上方显示被测钢筋保护层厚度值和被测钢筋的坐标 (钢筋 距离测量起点的距离,单位 cm。);同时存储测试结果。

当传感器移动的距离超过屏幕显示的范围时(移动距 离>1.2m),仪器自动翻屏,左上角总页数加 1。

测试完毕,按【返回】键保存测试图形及数据,返回到图 3.24 所示的参数设置界面。可重新进行参数设置、测试,也可按【菜

单】键进入主菜单界面。

说明:

1) 剖面扫描功能中的复测、超标显示与网格扫描功能中的定 义及操作方式相同;

2) 剖面扫描中有量程选择、测量方式两种热键功能,其定义 及操作方法参见 3.2.3.3;

3 剖面扫描中每屏可以显示的距离是1.2m,网格下是1.0m。

3.5 数据显示

本功能主要用于显示已存储的构件及其数据或图像。

在主菜单界面上,按【▲、▼】 键,将■调至"数据显示"前面,按【确 定】键进入"数据显示"功能,出现 图 3.27 所示的数据显示界面,左侧为

构件		数据	
AB01C1	预设直径	12	
3C5675	数据个数	20	
0086C	合格率	90%	
384C6C	最大值	46	
3CHL61	最小值	42	
	平均值	44	
	直径最大值	46	
	直径最小值	42	
	直径平均值	44	

图 3.27 数据显示界面

构件列表区,按照存储的先后倒序排列,即:最后存储的构件最 先显示。

在该界面中按【菜单】 键,可退回到主菜单界面。

右侧为数据显示区,可显示当前构件中存储数据的统计数据、 原始测量数据或图形。

在图 3.27 界面上按【▲、▼】键,可以移动光标至需要查看的构件下,右侧则显示出对应于该构件的统计数据。

按【确定】键进入数据查看状态,显示当前构件列表区中选 择构件的已存储的测试数据,分为以下三种:

3.5.1 普通测试的数据查看

如果原存储的构件是用普通测试的模式进行检测的,会出现 图 3.27 所示的界面内容。显示该构件测试时的预设直径、存储的 数据个数、测试数据中的最大/最小值、平均值等。按【确定】 键 进入图 3.28 所示的界面显示存储的数据。

图中各项含义如下:

- 1) NO.—序号;
- Dia—所测的直径值,此项 没有数据代表没有进行直 径测试;

构件		数据						
AB01C1	No	T	Dia	\triangle	Sx			
3C5675 0086C	1	22	16	-2				
384C6C	2	25	18	-1				
CGHL61	3	30			*			
	4	20	17	-1				
	5	16			*			
	6	22						
	7	24			L			

3) **T**--保护层厚度值,如果后 ^{图 3.28} 普通数据查看

- 面 Dia 中有测量的直径值,则此时的 T 是用"测量直径" 功能测出的厚度;
- 4) △—测量直径与预设直径的差;
- 5) Sx—所测的保护层厚度是否超标,如果超标用"*",反 之空白。

如果存储的数据个数超过一屏则按【▲、▼】键翻页查看(向上最多翻页显示到统计数据界面),在本界面上按【返回】键,则可退回到图 3.27 界面。

3.5.2 网格数据查看

在图 3.29 (a) 所示的界面上按【确定】键,进入图 3.30(列 表显示界面。在此界面上按【

按【▲、▼】键翻页看当前方向上的其它页信息。刚进入列表功 能时,仪器所显示的方向为用户实际所测的第一个方向。如果某 一方向无数据,则列表不予显示。

继续按【确定】键进入图 3.31 (网格显示)构件图形显示界 面。则按【▲、▼、◀、▶】键翻屏查看。

在数据显示过程中的任何一个界面,按【返回】键均可退回 到图 3.29(a)的界面,按【菜单】键返回至主菜单。

构件		数据			构作		数	棞		
AB01C1		Х	Y		000006	10	H	Dia	Δ	Q
3C5675 0086C <u>384C6C</u> 3CHL61	预设直径 数据个数 合格率 最大值 最均值 平均值	12 20 90% 46 42 44	12 20 90% 46 42 44		000006 000006 000006	1 2 3	12 22 22	12	- 2	+
		.)		J						
	ć	1)						D)		

图 3.29 网格/普通统计显示

000	009	Hx=10	((mm)
NO	Sx	Δs	Нx	Δx
1 2	126 183	 57	57 57	47 47

图 3.30 列表查询

3.5.3 剖面数据查看

在图 3.30 所示的列表界面上按【确定】键,进入图 3.32 所示的剖面图形查看界面,可按【◀、▶】键翻屏查看。与网格显示不同的是,剖面方式下显示的仅是一个方向的数据。

列表中符号定义:

- 1) NO—序号
- Sx---网格中的 X 方向位移
 /剖面方式下的位移
- 3) Sy-- 网格中的 Y 方向位移
- 4) Hx---网格中的 X 方向设计 图 3.32 剖面图形查看
 厚度/剖面方式下的设计厚度。

- 5) Hy---网格中的 Y 方向的设计厚度
- 6) △H---当前厚度与设计厚度之差,有正负。
- 7) △S---当前测点位移与上一个测点位移之差。

说明:列表中的所有数据都为 mm 进制,而图形显示中的位移是 cm 进制。

3.6 数据删除

删除已存储的数据 (全部数据)。

在主菜单界面,按【▲、▼】键,

图 3.33 数据删除

将■调至"数据删除"前面,然后执行以下操作:

按【确定】键,进入数据删除界面,如图 3.33 所示。 再按【确定】键,开始数据删除操作,屏幕显示"正在删除…",

37

约4秒钟后删除完成,自动返回菜单界面;

在图 3.33 数据删除界面若不进 行数据操作可直接按【返回】键返回 主菜单。

《《》》注意:该项功能将删除全 部数据,如果需要保存数据,请将数 据传输至计算机。

日期	05 - 08 - 18
时间	11 - 36 - 01
电量	þ
图 3.34	系统设置界面

3.7 系统设置

进入系统设置后,可以修改年/月/日/小时/分钟/秒。小时是以 24 小时计时的。也可以查看电池状态。

操作方法:只需按【▲、▼、◀、▶】键将光标调整需修改 的一项时间下面,按【▲、▼】键,可加、减1。修改完后按【确 定】键存贮设置可返回主菜单。若不需更改目前设置请直接按【返 回】键返回主菜单。

第4章 快速操作指南

4.1 测试前准备

1. 安装电池

打开电池舱上盖(见图 2.1), 按照电池舱内标示出的极性要求 将六节电池依次装入,盖好舱盖。

2. 连接主机-传感器

将信号线一端插头(黑色)的缺口与主机左侧相应插座的缺口对齐插入,并<u>顺时针旋转、锁紧</u>,然后将信号线另一端的插头按同样的方式插入传感器插座并锁紧。(见图 4.1 连接示意)。

注: 信号线无方向差别。

图 4.1 连接示意图

3. 连接主机-路径装置

如果起用剖面或网格扫描功能就必须连接路径装置。信号线 要按照正确的方式(插头上红点对红点,凹槽对凹槽)连接好主

机与路径装置。但要注意在插拔时握紧连接器插头前端的花纹部分,即靠近红点处(见图 4.2 路径连接示意)。

注: 信号线无方向差别。

正确的插拔方式

错误的插拔方式

- 图 4.2 路径连线示意
- 4. 安装传感器—路径装置

图 4.3 安装示意图 图 4.4 拆卸示意图 装配传感器与路径装置见图 4.3 所示。放置好传感器的方向 (接口与路径接口在同一方向)。向凹槽内滑入,注意:从侧面看, <u>传感器中心孔要对准路径装置上的柱形突起(大约 10mm 长)</u>, 然后按下传感器可以听见"咔"的一声,传感器就会被牢牢的卡 在路径装置上。

从路径装置上拆除传感器时,两手轻轻向外扳开传感器两侧 的红色卡簧,同时向下推出传感器即可,如图4.4 所示。

5. 开机

按下"⁽⁾"键,主机上电开始工作,屏幕显示开机界面,显示 公司名称、仪器型号等信息,详见3.1节。

4.2 钢筋定位和保护层厚度测量

4.2.1 一般操作

4.2.1.1 参数设置

- 1) 设置预设直径;
- 2) 设置最小厚度为 0;
- 3) 设置构件编号(可选);
- 将传感器拿在空中不动并远 离铁磁体;
- 5) 按[返回]键进入测量界面;

言号值 ∖	滚动条	超相	标提示	
0.00		ահատկումուս	հահահահ	ntuntunt
当	前厚度	35	mm	
保	护层	25	mm	ì
钢 存	筋直径 储数	22 12	mm	
****	** d ** 🗆	A =		C 95
构件名	预设直径	状态信	息合相	各率
	图 4.5 测	则试界	面	

6) 约3秒钟后当前厚度显示0,复位完成,进入测量状态

4.2.1.2 系统复位

4()

1) 将传感器远离铁磁体置于在空中,按下【确定】键。

《《《》注意:在当前厚度值显示 0 之前让传感器远离钢筋及其 它铁磁体!

2) 当前厚度值消失,复位过程开始。

3) 约3秒钟后,当前厚度值显示0,复位操作完成。

《《《》注意: 在测量过程中应每隔 10 分钟左右进行一次复位 操作。

4.2.2 定位钢筋

一般应首先定位上层钢筋(或箍筋),然后在两条上层钢筋(或 箍筋)中间测量来定位下层钢筋(或主筋)。

在混凝土表面沿一个方向匀速移动传感器,注意观察滚动条、 当前厚度值、保护层值和蜂鸣器声音。通过下列几种方法中的任 何一种都可以判定钢筋位置。

1. 蜂鸣器发出鸣叫声。

此时仪器提示传感器越过一条钢筋,然后向<u>相反方向移动传</u> 感器,找到当前厚度值最小的位置,即是钢筋的准确位置。

2. 信号值由小逐渐变大,然后又变小。

传感器逐渐接近钢筋时,信号值逐渐变大,反之,信号值变 小,找到该值最大的位置,即是钢筋的准确位置。

该值是测量保护层厚度的基本依据。因为在保护层厚度变化 1mm 范围之内时,当前厚度值不会发生变化,而信号值可以反映 更微小的变化;所以根据该值可以更精确地确定钢筋位置。

3. 当前厚度值由大逐渐变小,然后又变大。

传感器逐渐接近钢筋时,当前厚度值逐渐变小,反之,当前

厚度值变大,找到该值最小的位置,即是钢筋的准确位置。

4. 滚动条逐渐增长,然后又缩短。

传感器逐渐接近钢筋时,滚动条逐渐增长,反之,滚动条逐 渐缩短,找到滚动条最长的位置,即是钢筋的准确位置。

4.2.3 定向钢筋

可以采取下列两种方法来确定钢筋走向:

 确定钢筋位置后,在 钢筋正上方左右旋转 传感器,当前厚度值 及屏幕左上角信号值 相应有所变化,当<u>信</u>
 号值最大当前厚度值 最小时,此时传感器

与钢筋平行,传感器走向即为混凝土内部被测钢筋的走向。

在相互平行的两条测量线上分别测量钢筋位置,两个位置点的连线即是钢筋走向。如图 4.6 所示。

4.2.4 测量保护层厚度

4.2.4.1 自动判读

42

传感器平行与钢筋走向,并沿与钢筋走向垂直的方向匀速扫 过钢筋正上方,仪器发出一声鸣叫,提示传感器越过一条钢筋,

此时保护层显示值自动更新为该处的混凝土保护层厚度值。

该方法适用于钢筋间距大于表 5.1 中描述的情况。

表 5.1

单位: mm

被测	钢筋位于」	L层	被测钢筋位于下层		
保护层 厚度	平行钢 筋间距 a1	垂直钢 筋间距 b1	保护层 厚度	平行钢 筋 间距 a2	垂直钢 筋 间距 b2
15	70	80	15	70	90
30	80	100	30	80	110
45	100	120	45	100	130
60	120	140	60	120	150

4.2.4.2 人工判读

该方法适用于钢筋间距小于表 5.1 中描述的情况。

当现场环境复杂自动判读困难时,可依据**当前厚度及信号值** 的变化情况来判定保护层厚度值:当该值有两个以上连续下降然 后又有两个以上连续上升的时候,可以判定该处有一条钢筋,混 凝土保护层厚度值即是上述过程中的最小值。例如:当前厚度显 示值变化如下时即可判定一条钢筋,63-62-61-62-63;保护层

厚度值为61。

4.2.5 存储保护层厚度测量值

仪器自动测量的保护层厚度值可以按照构件编号分组保存下 来。最多可以存储 1000 个构件编号,每个构件编号中最多存储 256 个保护层厚度值。每个编号中同时存储测量时设置的直径预 设值,该直径预设值为第一个保护层厚度值测量时使用的值,如 果用户在存储数目大于0时改变预设直径值,仪器不予存储。

4.3 密集钢筋测量

在梁类或有些柱类构件中,往往存在钢筋密集排列的情况, 有时钢筋净间距在 1.5 倍钢筋直径左右。在这种布筋情况下,扫 描过程中保护层厚度值变化很小,一般钢筋测量仪器都很难准确 的判定钢筋数目和钢筋位置。

此时,建议用户使用 R630 的"密集钢筋测量方式"进行测量。

ZBL-R630 针对密集钢筋构件设计了专用测量方式,用户可以针对被测构件的情况选择不同的测量方式:

- 构件中钢筋间距较大,如板类构件,宜采用一般测量方 式;
- 构件中钢筋间距较小,如梁类构件,宜采用密集钢筋测 量方式。

在图 4.5 所示的测量界面下,按【▼】键,仪器在一般测量 方式和密集钢筋测量方式切换。当处于密集钢筋测量方式时,状

态栏中出现"三"标志。

在密集钢筋测量方式下,钢筋定位和保护层厚度的测量、存储方法与 4.2 节相同。

采用密集钢筋测量方式应注意以下几点:

- 1) 扫描速度不应过快, 宜小于 15mm/秒。
- 扫描过程一定要保持单向移动传感器,并保证传感器与 被测钢筋平行。
- 3) 尽量选择交叉筋间距较大的位置进行测量。
- 在第一次扫描过程完成后,建议在相反方向进行一次验 证扫描,以提高可靠性。

- 1) 定位箍筋 (方法见 4.2 节)。
- 2) 在间距较大的箍筋中间,确定一条 扫描线。

- 3)选择一个方向进行扫描测量,并标 记钢筋位置。
- 4) 在相反方向进行第二次扫描,并标记钢筋位置。
- 5) 如果两次扫描结果相吻合,测量过程结束。
- 6) 否则重复3、4步测量,如果两组测量过程都符合以下特征:第一次扫描可以确定A、B、C 三根钢筋,相反

方向扫描可以确定 D、C、B 三根钢筋。那么基本可以确定该构件有 4 根钢筋。

4.4 最小保护层厚度测量

该功能主要应用于下列场合:

- 1) 模板拆除后检查钢筋是否撑出
- 2) 快速检查保护层厚度是否满足最小设计值

操作步骤

- 1) 设置预设直径值为被测钢筋直径
- 2) 设置需要报警的最小保护层厚度值
- 3) 扫描被测物,当保护层厚度小于设定值蜂鸣器报警。

在该测量方式下,用户可以用较快的速度进行扫描而不用注 意屏幕显示。

4.5 钢筋直径测量

首先准确定位钢筋,然后确定钢筋的准确走向,此时将传感 器置于被测钢筋正上方,按下【▲】键,屏幕显示钢筋直径 字样, 约等片刻直径测量结果直接显示在屏幕上,同时将测得的保护层 厚度值,显示在保护层显示值位置上,该值前有一▶标志,以区 别于依据预设直径值测量的保护层厚度值。如果保护层厚度小于 表 5.2 中相应的最小值,仪器显示"厚度太小",如果保护层厚度 大于表 5.2 中相应的最大值,仪器显示"厚度太大",此时无法测 量钢筋直径。

表 5.2 钢筋直径测试范围

单位: mm

钢筋直径	最小保护层厚度	最大保护层厚度
6	8	58
8	12	62
10	16	66
12	16	68
14	16	68
16	16	72
18	16	72
20	18	74
22	18	74
25	20	76
28	22	76
25	20	76
28	22	76
32	22	80

测量时如遇到保护层厚度太小的情况,建议在传感器底部垫 一块有机玻璃(或其它非金属材料),将测量值减去垫块厚度即为 实测保护层厚度。

4.6 钢筋测量的一般原则

- 扫描面应比较平整,无较高的突起物。如果表面过于粗 糙而无法清理时,可以在扫描面上放置一块薄板,在测 量结果中将薄板的厚度减掉。
- 2) 扫描过程中尽量使传感器保持单向匀速移动。

扫描方向应垂直于钢筋走向(如图 4.11),否则可能会
 造成误判(如图 4.10)。

对于网状钢筋,一般应首先定位上层钢筋,然后在两条 上层钢筋中间测量来定位下层钢筋。

扫描以下二维码可访问我公司官网、关注我公司微信公众号:

公司官网

微信公众平台

电话: 010-51290405 传真: 010-51290406 网址: http://www.zbl.cn 版本: Ver4.0-20161022

