

ZBL-F610 製缝测深仪 使用说明书

目 录

本	说	归丰	中	的约定			• • • • • • •	• • • • • • • •	• • • • • • • • •	III
第	1	章		概述		•••••	•••••	•••••	•••••	1
	1.1		简介	,						1
	1.2		主要	技术指标.						1
	1.3		注意	事项						2
		1.3	3.1	使用说明	月书					2
		1.3	3.2	工作环境	竟要求:.					2
		1.3	3.3	存储环境	竟要求					2
		1.3	3.4	其他要求	k					3
	1.4		仪器	的维护及的	呆养					3
		1.4	1.1	电源					•••••	3
		1.4	1.2	充电						3
		1.4	1.3	充电电流	也				•••••	
		1.4	1.4	清洁						4
	1.5		责任							5
第	2	章	<u>:</u>	仪器描述			•••••	• • • • • • •	•••••	<i>6</i>
	2.1		仪器	组成						<i>6</i>
		2.1	1.1	主机					•••••	<i>6</i>
		2.1	1.2	换能器.					•••••	9
		2.1	1.3	配件					•••••	9
	2.2	,	测试	方法						10

		2.2.1	测试条件	10
		2.2.2	自动检测方法	10
		2.2.3	手动检测方法	11
第	3	章	操作指南	13
	3.1	测量	前准备与开机	13
	3.2	菜单	9介绍与操作	13
		3.2.1	主菜单	13
		3.2.2	手动检测	14
		3.2.3	自动检测	21
		3.2.4	数据传输	28
		3.2.5	数据查阅	32
		3.2.6	数据删除	34
		3.2.7	系统设置	37
第	4	章	快速入门	39
	4.1	使用]前检查	39
	4.2	手动	n检测	39
	4.3	自动	b检测	39
	4.4	数据	6传输	39
	4.5	数据	- 适阅	40
	4.6	数据	删除	40
	4.7	系统	设置	40
附	录	1 US	B 驱动程序的安装	41

本说明书中的约定

- 1. 灰色背景、带黑色方框的文字
- 2. 表示界面上的一个按钮,如:确定钮。
- 3. 仪器面板上的按键均用【】表示,如:【存储】键。
- 白色背景、带黑色方框的文字表示 Windows 软件菜单命令, 其中"→"表示菜单级间的分割符,如文件→打开表示文件 菜单下的打开菜单项命令。
- 5. 灰色背景、不带方框的文字表示屏幕上选项或菜单名称。如 选择参数设置中的构件选项。
- 6. 标志 为需要特别注意的问题。
- 7. 除了本说明书中介绍的内容之外,用户在使用仪器的过程中, 会自动显示一些提示信息,请按提示信息操作。
- 8. 本说明书中的软件界面及照片仅用作示意,随着软件升级和产品的不断改进可能会发生变化,恕不另行通知。

扫描以下二维码可访问我公司官网、关注我公司微信公众号:

公司官网

微信公众平台

第1章 概述

1.1 简介

本仪器采用超声波衍射(绕射)原理的单面平测法,对混凝 土结构的表面裂缝深度进行检测。

仪器实现了自动检测和手动检测两种检测方式:

自动检测方式是利用超声波在混凝土中的传播特性,结合相 应几何计算方法实现了混凝土等非金属材料构件的裂缝深度的检 测方法。

手动检测方式是根据超声波在介质中传播过程中遇到裂缝时, 波形相位的变化、测试距离与裂缝深度之间的关系而使用的测试 方法。该方法操作简单,容易掌握,是常用的测试方法。

1.2 主要技术指标

换能器

项	目	指标
检测范围	手动	5~500mm
	自动	5~500mm
检测精度	手动	±5mm 或不大于±10%
	自动	±5mm 或不大于±10%
体积	主机	190mm × 135mm × 52mm

 \emptyset 28 mm × 72mm

表 1.1 主要技术指标

重量	主机	740g(含电池)	
	换能器	110g × 2	
供电方式	可充电锂电池(额定能量为 23.31Wh)		

1.3 注意事项

1.3.1 使用说明书

为了更好地使用本检测仪,请您在使用仪器前仔细阅读使用说明书。

1.3.2 工作环境要求:

环境温度: 0℃~40℃

相对湿度: <90%RH

不得长时间阳光直射

防腐蚀:在潮湿、灰尘、腐蚀性气体环境中使用时,应采取必要的防护措施。

1.3.3 存储环境要求

环境温度: -20℃~+60℃

相对湿度: <90%RH

不用时请将仪器放在包装箱中,在通风、阴凉、干燥环境下 保存,不得长时间阳光直射。

若长期不使用,应定期通电开机检查。

1.3.4 其他要求

1.3.4.1 避免进水。

1.3.4.2 避免磁场

避免在强磁场环境下使用,如大型电磁铁、变压器附近。

1.3.4.3 防震

在使用及搬运过程中,应防止剧烈震动和冲击。

1.4 仪器的维护及保养

1.4.1 电源

本仪器采用内置专用可充电锂电池进行供电,使用时请注意电量指示,如果电量不足时,则应尽快采用外部电源(交流电源或外部充电电池)对本仪器供电,否则可能会造成突然断电导致测试数据丢失甚至损毁系统;如用交流电源供电,则应确保外接电源为 AC220±10%V,否则会造成 AC-DC 电源模块甚至仪器的损坏。禁止使用其他电池、电源为本仪器供电。

1.4.2 充电

用本仪器配套的充电器为内部电池充电时,只需将电源插头端接到 AC220±10%V 的插座中,直流输出端接到仪器的电源插口中即可。当充电器顶部的指示灯变绿时,则表示电池已经充满。

注意:为了保证完全充满,请保持连续充电 6~8 小时,同时不要在超过 30℃的环境下对仪器充电。

仪器长期不用,充电电池会自然放电,导致电量减少,使用前应再次充电。充电过程中仪器和AC-DC电源会有一定发热,属正常现象,应保持仪器、AC-DC电源或充电器通风良好,便干散热。

注意:不得使用其它充电器对仪器充电,否则有可能对 仪器造成破坏。

1.4.3 充电电池

充电电池的寿命为充放电 500 次左右,接近电池充放电寿命时,如果发现电池工作不正常(根本充不上电、充不满或充满之后使用时间很短),则很可能是充电电池已损坏或寿命已到,应与我公司联系,更换新的电池。禁止将电池短路或靠近高温热源。

1.4.4 清洁

每次使用完本仪器后,应该对主机、传感器等进行适当清洁,以防止水、泥等进入接插件或仪器,从而导致仪器的性能下降或 损坏。

注意:请勿将仪器及配件放入水中或用湿布擦洗!

注意:请勿用有机溶剂擦洗仪器及配件!

请用干净柔软的干布擦拭主机。

请用干净柔软的毛刷清理插座。

1.5 责任

本仪器为精密检测仪器,当用户有以下行为之一或其它人为破坏时,本公司不承担相关责任。

- (1)违反上述工作环境要求或存储环境要求。
- (2) 非正常操作。
- (3)在未经允许的情况下擅自打开机壳,拆卸任何零部件。
- (4)人为或意外事故造成仪器严重损坏。

第2章 仪器描述

2.1 仪器组成

仪器主要包括主机、换能器及充电器等配件组成。

2.1.1 主机

如图 2.1a 所示,接收探头接口、USB 接口、电源插口及电源开关位于主机前面板上,液晶屏及操作键位于主机上面板。主机底面有蜂鸣器孔、铭牌及电池舱,如图 2.1b 所示。

a)前面板与上面板

b)底面 图 2.1 主机

表 2.1 按键说明

键名	主要功能说明
【菜单】	进入主菜单界面
【存储】	对测试数据进行存储或对输入参数进行存储
【确定】	对当前输入(选择)的数据、状态进行确认
【返回】	从当前状态或界面返回至上一状态或界面
[∢、▶]	左/右移光标;向前、后翻页;
[▲、▼]	上、下移光标; 当前数据项递增、递减;

2.1.1.1 键盘

键盘位于主机上面板,各键的功能如表 2.1 所示。

2.1.1.2 液晶屏

用于显示操作界面及检测数据等。

2.1.1.3 电源开关

用于打开/关闭仪器电源。

2.1.1.4 发射接口与接收接口

通过信号线与发射、接收换能器相连。

2.1.1.5 USB接口

用于将测试数据传输到计算机中。

2.1.1.6 电源插口

将主机电源适配器(9V,1.5A)的输入插头连接200-240V交流电源、输出插头接入此口,为仪器供电,同时为内部电池充电。

2.1.1.7 充电指示灯

指示充电状态,充电时此灯亮,充满后此灯熄灭。

2.1.1.8 蜂鸣器孔

蜂鸣器透声孔(此孔遮挡后会影响透声效果)。

2.1.1.9 铭牌

用于标示公司名称、生产日期、仪器出厂编号等。

2.1.1.10 电池舱

用于安装充电电池。需要更换电池时,可将此舱打开后将旧电池取下,换上新的充电电池。一般用户不需要此功能。

2.1.2 换能器

测量裂缝深度时,必须使用两只换能器,一只用于发射,一只用于接收,如图 2.2 所示。发射换能器将电信号转换成超声波,超声波在被测物体中传播,接收换能器接收后将超声波转换成电信号。两只换能器可以互换使用。

注意: 任何时候应尽量避免换能器受到猛烈的撞击。

图 2.2

2.1.3 配件

2.1.3.1 充电器

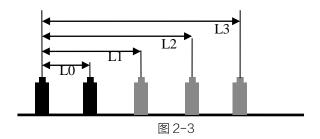
充电器的输入插头连接 200 - 240V 交流电源、输出插头接入主机的电源插口,为主机供电,同时为其内部电池充电。

2.1.3.2 其他附件

详见仪器装箱单。

2.2 测试方法

2.2.1 测试条件

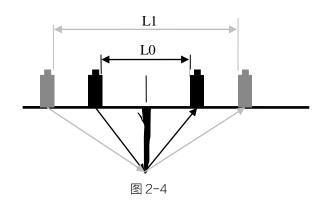

利用本仪器对结构混凝土裂缝深度检测时,要求被测的裂缝 内无耦合介质(如水、泥浆等),以免造成超声波信号经过这些耦 合介质"短路"。

2.2.2 自动检测方法

分 3 步完成裂缝深度的测试工作:

第一步:不跨缝测试,得到构件的平测声速。

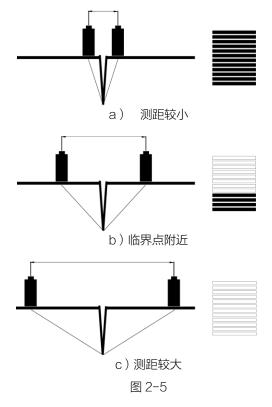
该步要求在构件的完好处(平整平面内,无裂缝)测量一组特定测距的数据,并记录每个测距下的声参量,通过该组测距及对应的声参量,计算出超声波在该构件下的传输速度。


如图 2-3 所示,在构件的完好处分别测量测距为 L0、L1、 L2、以及 L3…时的声参量,计算出被测构件混凝土的波速。

条件允许时,尽量进行不跨缝数据测试,以获得准确的声速 和修正值。当不具备不跨缝测试条件时,可以直接输入声速。需

要指出的是,<u>声速是对应于构件而非裂缝</u>,无需在测量每个裂缝时都测量声速,只要是在同一个构件下,只测量一次声速即可。

第二步: 跨缝测试,得到一组测距及相应的声参量。


如图 2-4 所示为跨缝测试示意图,测量一组与测距 $L0 \times L1 \times L2 \cdots$ 相对应的超声波在混凝土中的声参量,为第三步的计算准备数据。该组测距在测量前设定,ZBL-F610 是用初始测距 L0 累加测距调整量 ΔL 来得到的。

第三步: 计算裂缝深度。

2.2.3 手动检测方法

手动检测方式根据波形相位发生变化时测距和裂缝深度之间 的关系而得到缝深。

手动检测的首要目的就是寻找波形相位变化点,如图 2-5 所示,从 a 到 b 再到 c 缓慢移动换能器的过程中就会出现波形相位变化的现象。移动过程中只要发现波形相位发生跳变(图 b),立即停止移动,记录当前的位置并输入到仪器,即可得到缝深。

第3章 操作指南

3.1 测量前准备与开机

测试前的准备工作如下:

- 1) 选择好构件的测量部位;
- 2) 清除构件测量部位表面的尘土和杂物;
- 3) 清除换能器底部的杂物和残杂的耦合剂;
- 4) 将换能器和主机连接;
- 5) 打开仪器,自动进入主菜单。

3.2 菜单介绍与操作

3.2.1 主菜单

图 3-1

手动检测

自动检测 数据传输 数据查阅 数据删除 系统设置

图 3-2

打开仪器后系统进入开机界面(图 3-1)后自动进入主菜单,如图 3-2 所示。

在主菜单界面下,按【◀】键可开、关按键音,按【▶】键可开、关屏幕背光灯。

进入主菜单界面,光标默认选中手动检测选项,按【▲、▼】键可以移动光标,选择所需要的选项,然后按【确定】键即可进入所选中的选项。

在主菜单界面下,【菜单】键和【保存】键无效,按【返回】 键可返回开机界面,开机界面只停留3秒,然后自动进入主菜单 界面。

3.2.2 手动检测

在图 3-2 的界面下选中手动检测,然后按【确定】键即可进入手动检测界面,如图 3-3 所示。手动检测界面下的参数区共有2个参数可设置,分别是构件和缝号。按【▲、▼、◀、▶】键可分别选中这 2 参数,选中后再按【确定】键即可进入相应的参数设置。

图 3-3

3.2.2.1 设置构件名

选中构件,按【确定】键进行构件名设置,光标即移到构件名上。

构件 0 0000B 缝-	
扫描 停止 L	000mm L2 000mm
维深	01234567 89ABCDEF GHIJKLMN OPQRSTUV WXYZ+-#/
3	₹ 3-4

构件名为6位,设置构件名时,默认选中构件名的第一位,此时可按【◀、▶】键来移动光标选中其它位。选中需要修改的位后按【▼】键或【确定】键即可调出软键盘面板(图3-4所示),此时光标已经移到软键盘上,按【▲、▼、◀、▶】键可移动光标来选中所需要的字符,然后按【确定】键还获得该字符以完成当前位的修改。继续按【◀、▶】键移动光标,可选中其它位并进行修改,这里不再细述。

设置过程中,如果要退出设置并采用原有的构件名,可以直接按【返回】键;若调整了所有需要调整的位,需退出并保存时,可按【存储】键。

本系统不允许构件重名,若构件重名,系统会提示"构件名已经存在,按确定键使用该名,按返回键继续设置"。此时若按【确定】键,则相当于在已经存在的构件下追加一条新的裂缝。若没有重名的构件,则创建新的构件,系统会提示"新构件已创建",并自动将缝号置为001。

注意:测试并添加完新的裂缝时,系统会自动跳到<u>最后</u>创建的构件下,准备继续添加裂缝。

3.2.2.2 设置缝号

移动光标选中<mark>缝号</mark>,按【确定】键进行缝号设置,界面如图 3-5 所示。

图 3-5

如图 3-5,缝号数值为 3 位,最大值为 255。设置时默认选中最高位,按【 ◀、▶】键可移动光标选中其它位。当光标停在某位时按【 ▲、▼】键可增加或减小该位数值。

此过程中若将数值调到了某已经存在的编号上,由于编号不允许重复,故系统会在该编号的基础上加 1,如果仍存在则继续加 1,直到编号没有重复为止。

提示:在测试的过程中,若要对某裂缝(如 001)进行多次测量,可以采用"001""101""201"等这样有规律的编号标记不同的测量结果。

每完成一条裂缝的测试并保存后,系统会自动根据当前构件 下的缝数设置新的编号,若遇到编号重复,系统会自动增加缝号 直到没有重复为止。

3.2.2.3 测试

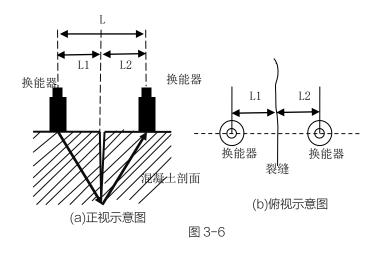


图 3-6 为手动检测示意图, L1 和 L2 为测距, 测试过程中应尽量使这两个距离相等, 且使两个换能器连线与裂缝走向垂直。测试方法如下:

- 1) 将换能器置于相距较远的位置,使得L1和L2足够大(比 检测前估计的裂缝深度大即可),并使L1和L2尽量相 等,换能器与混凝土面之间应该使用耦合剂耦合,以保 证接收信号的强度。
- 2) 按【▲、▼、▲、▶】键将仪器上的光标移到扫描选项上(见图 3-7),并按【确定】键启动超声波发生器,使得发射换能器保持在超声波发射状态,而接收换能器接收其发出的超声波(图 3-8)。此时屏幕的信号示意区很快变为类似图 3-9(a)所示的情况。

构件00000B	缝	号 004	L ₁	000 mm
扫描 停止	L	000 mm	L2	000 mm
缝深				
000	mm			
按方向键移动光 按确定键开始打 按返回键退出测	日描			

图 3-7

构件00000B 组	逢号004 L1 000mm
扫描停止	L 000mm L2 000mm
缝深	
000	m
按确定键停止扫扫	HH

图 3-8

提示: 若缓慢移动换能器,使得 L1 和 L2 逐渐变得足够小(比检测前估计的裂缝深度小即可),信号示意区的情况会如图 3-9 所示的情况由(a)变为(b),然后再变为(c)。由(a)到(c)的变化过程非常快,而手动检测的目的正是为了捕捉该变化过程。

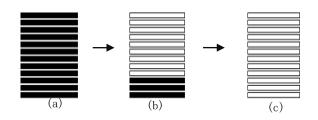


图 3-9

3) 双手轻按并移动换能器并保持用力均匀一致。找到 a、b 变化的临界位置后,适当增大 L1、L2 到刚刚出现 a 时, 保持传感器位置不动并停止超声波发射。

3.2.2.4 裂缝深度计算

构件00000B	缝-	号 004	L ₁	000 mm
扫描 停止	L	000 mm	L2	000 mm
缝深				
000	mm			
按方向键移动为				
按确定键开始持按返回键退出测				

图 3-10

完成了 3.2.2.3 的测试工作,需要测量图 3-6 中的 L 的大小 (单位为 mm, 测量两个换能器中心距)或者分别测量 L1 和 L2

的大小(单位为 mm,测量两个换能器中心到裂缝的距离),并将L或者L1和L2输入到仪器进行计算,具体操作如下:

按【▲、▼、▲、▶】键将光标移到 L 上, 如图 3-10 所示, 按【确定】键对 L 的大小进行编辑。

进入编辑状态后默认选中第一位,此时按【▲、▼】键()可改变当前位数值的大小,按【◀、►】键可选中其它位,如图 3-11 所示。

构件00000B	缝-	号 004	Lı	000 mm
扫描 停止	L	$114\mathrm{mm}$	L2	000 mm
缝深				
000	mm			
上下键改变大小 左右键移动光标 存储键确定保存	示			

图 3-11

构件00000B	缝	号 004	L ₁	057 mm
扫描 停止	L	114mm	L2	057 mm
缝深				
050	mm			
按方向键移动为 按确定键开始打	日描			
按返回键退出测	训试			

图 3-12

将 L 的大小调整到所测量到的大小(单位为 mm),按【存储】 键保存,系统即接受该参数并退出 L 的编辑状态,回到参数选择

状态。

在完成 L 大小的输入并保存时, 系统将 L1 和 L2 的大小自动设为 L 的 1/2 (如图 3-12 所示)并计算缝深。

如果实际测量的距离是 L1(L2),则只需要按【 ▲、▼、 ◀、 ▶】键将光标移到 L1(L2)上,按【确定】键对 L1(L2)的值 进行修改,操作方法与修改 L 的方法完全一致,这里不再细述。

完成 L1(L2)的输入,如果之前 L2(L1)的值从未进行调整,系统会自动将 L1(L2)的大小赋给 L2(L1),并将 L1和 L2的和付给 L 并计算出裂缝的深度。

3.2.2.5 存储

在完成了 3.2.2.3 与 3.2.2.4 的步骤后按【存储】键,系统即 将该编号裂缝的相关信息(编号、测距、深度等)存储起来,并 更新该构件的最后刷新时间。

3.2.2.6 继续测试

当前裂缝数据保存后,系统会自动将裂缝编号加 1, 光标自动选中扫描选项,此时如果不需要修改系统提供的参数,按【确定】键即可继续检测下一个裂缝。

3.2.3 自动检测

打开仪器进入开机界面后,系统自动进入主菜单界面,系统默认选中于动检测选项,按【▲、▼】键移动光标,选中自动检测,按【确定】键进入手动检测界面,如图 3-13 所示。

与手动检测不同在于,自动检测需要多设置一个参数(声速),

而且自动检测时先设置好所有的参数,然后开始测试,停止测试 时无需再输入测距,测试完成即可保存数据。

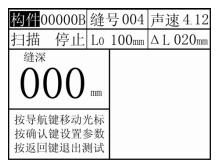


图 3-13

3.2.3.1 设置构件名和缝号

此两参数的设置与手动检测完全一致,请参阅3.2.2。

3.2.3.2 设置声速与声速测定

构件00000B	缝	号 004	声速4.12
扫描 停止	Lo	100mm	Δ L 020mm
缝深			
000	mm		
按确定键标定声存储键确定保存			

图 3-14

应强调,条件允许时尽量进行不跨缝测试,以获得平测声速和修正值,提高测试精度。条件不允许时,才直接输入声速。对于同一批次的混凝土的声速理论上相差不大,在创建新的构件时,

若已经存在同一批次混凝土的构件,可以直接输入测量该已经存在的构件时所测得的声速,输入方法类似于缝号的设置,这里不再细述,重点介绍声速的测定方法(输入或测得的声速的单位为km/s,或者mm/µs)。

如图 3-13 进入自动检测界面后,按【▲、▼、◀、►】键 移动光标,选中声速,按【确定】键进入声速设置状态,如图 3-14 所示,再按【确定】键即进入声速测定界面,如图 3-15 所示。

构件00000B	缝	号004	声词	0 .00
扫描 停止	Lo	100mm	ΔL	020mm
演距 声时 100mm 000.0 p 120mm 000.0 p 140mm 000.0 p 160mm 000.0 p	ı S ı S			
按上下键选择测 左右键删除数据 按确定键开始打	居			

图 3-15

声速标定时有 10 组(图 3-15 中只有 4 组,按【▲、▼】 键可找到其它组)包含测距、声时的数据,测距已经预设成以 L0 为首项以 ΔL 为公差的等差数列,而声时全部为 0 (对于已经进行过声速测定的构件,进入该界面时声时为上次测定的值)。

提示:如果预设的测距不适宜于当前构件的现场条件 (过大、过小等),可以先退出标号设置,将 L0 和 Δ L 的大小调整为合适的大小再进入该项进行标定,详细的操作见 3.2.2.3。

光标默认在第一组数据上面,可以按【▲、▼】键移动光标 选择其它数据,下面以第一组为例,来说明如何得到声时。

如上图,当光标选中 100mm 时,将换能器置于构件上较平整的部位,使其内间距(两个换能器底面的最小距离)为 100mm (换能器与构件间要用黄油来耦合,两个换能器之间的混凝土需平整、不可以有裂缝),按【确定】键即启动超声波收发电路,换能器开始工作,光标随即移到与 100mm 相对应的声时上来,此时声时已经不为 0,如图 3-16 所示。

待右侧的信号稳定下来,按确定键停止超声波发射,光标即回到 100mm上,而 100mm 所对应的声时(图中对应的为 21.6μS)被保存下来。这样就获得了完整的第一组标定数据。

构件00000B	缝	号004	声速 0.00
扫描 停止	Lo	$100 \mathrm{mm}$	$\Delta \mathrel{L} 020 \mathrm{mm}$
测距 声时 100mm 021.6 L 120mm 000.0 L 140mm 000.0 L 160mm 000.0 L	ı S ı S		
按确定键停止打	日描		

图 3-16

为了使声速参数更准确(较少的数据无法计算出声时和测距的修正值),本系统要求至少测得3组数据,否则在计算时采用默认值进行计算。在光标处于左侧测距上时,可按【▲、▼】键来选择新的测距,并按【确认】键再次测试以获得新的数据。对于不需要的数据可按【◀、▶】键来清零。

测完所有组数据后,即可按【存储】键进行保存,系统同时 计算出声速,该信息作为构件信息的一部分保存在构件信息里,

该数据适用于该构件上所有裂缝的计算。

3.2.3.3 设置初始测距和测距步进量

移动光标(非参数编辑的状态下)选中 L0 选项,如图 3-17 所示,按【确定】键设置初始测距 L0(图 3-18)。

构件00000B纟	逢号004	声速 4.12
扫描停止	100 _{mm}	Δ L 020mm
维 深		
000	nm	
按导航键移动光 按确认键设置参 按返回键退出测	数	

图 3-17

构件00000B	缝	号 004	声速 4.12
扫描 停止	Lo	100mm	$\Delta \mathrel{L} 020 \mathrm{mm}$
缝深			
000	mm		
按导航键移动光 按确认键设置参 按返回键退出测	数		

图 3-18

图 3-18 中,按【▲、▼】键可调整当前位数值的大小,按 左右键可移动光标选中其它位,按【返回】键取消初始测距的设 置,使用原来的数值。各个位都调整到所需要的数值后按【存储】 键进行保存并退出。

测距增量的设置与设置初始测距的操作方法完全类似,不再

细述, 见图 3-19、图 3-20 所示。

构件00000B 组	逢号004	声速 4.12
扫描 停止 I	Lo 100mm	ΔL 020mm
缝深		
$ 000$ $_{ t m}$	m	
按导航键移动光标 按确认键设置参数 按返回键退出测记	数	

图 3-19

构件00000B	缝	号 004	声返	<u>t</u> 4.12
扫描 停止	Lo	100mm	ΔL	020mm
缝深				
000				
000	mm			
按导航键移动为				
按确认键设置参				
按返回键退出测	川讧			

图 3-20

3.2.3.4 测试

构件00000B	缝-	号004	声速 4.12
扫描 停止	Lo	100mm	Δ L 020mm
缝深			
000	mm		
按方向键移动为 按确认键停止打 按返回键退出》	3描		

图 3-21

各参数设置完成后就可以进行测试了。具体的操作如下:

- 1) 移动光标,选择扫描选项,此时信号区出现"测距 1: 100mm"的提示字样,如图 3-21 所示。
- 2) 将换能器置于裂缝两侧,使其内间距 100mm,并尽量 使两个换能器与裂缝的距离相等,两换能器连线与裂缝 走向垂直,换能器与混凝土面用黄油耦合。
- 3) 保持换能器与混凝土面的良好的耦合状态,按【确定】 键开始扫描,如图 3-22 所示。

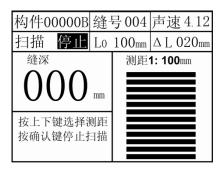


图 3-22

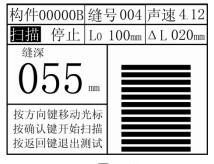


图 3-23

4) 待信号稳定后按【确定】键停止本次扫描,如图 3-22

所示,系统自动保存本次扫描所获得的声时值,并计算本次测量后裂缝深度值,见图 3-23 所示。

提示: 欲重复某测距下的测量,可在扫描时重新选择该测距,待信号稳定后按【确定】键即获得新的声时,原有的数据即被覆盖。

5) 重复 1)到 4)的操作至少 2次,以获得至少 3组数据,每次扫描后缝深都会更新,这是每次扫描后重新计算的结果。

3.2.3.5 保存

获得至少3组数据后,可直接按【存储】键保存当前的测试 结果,系统保存数据后会调整裂缝编号,准备下一条裂缝的测量。 可直接按【返回】键返回主菜单而不保存。

3.2.4 数据传输

数据传输功能实现将仪器上已经保存的数据通过数据线传输到 PC 机,并进行数据处理、存档和打印等工作,这里详细介绍如何实现这些功能。

3.2.4.1 USB 驱动程序的安装

在接收数据的计算机上安装 USB 驱动程序,详细的说明请 参阅《附录 1 USB 驱动程序的安装》。

3.2.4.2 PC 端软件 "F610 数据传输软件"

该软件主要用于将仪器内部保存的数据传输到计算机上。

3.2.4.3 数据传输与处理

本传输软件主要是将本公司的 ZBL-F610 裂缝测深仪上的 检测数据通过 USB 口传输到运行 WINDOWS 操作系统的计算机 上,进行数据处理、存档和打印。应按如下步骤进行:

1) 用随机提供的专用传输线将计算机的 USB 口与 F610 裂缝测深仪的 USB 口连接起来。连接传输线时,最好把仪器电源关闭,以免对计算机和仪器造成伤害。在第一次连接传输线时,计算机将会检测到新的硬件,需要安装驱动程序,详细操作见附录 1。

图 3-24

2) 运行 WINDOWS 平台下的分析处理软件,弹出图 3-24 (a) 所示对话框。选择数据文件类型并将传输端口设为 USB 口,点击开始传输按钮,则弹出"文件另存为"对 话框(图 3-25 所示),要求用户输入传输数据保存的文件名称,输完后点击保存(信息提示框内会显示端口初始化完毕,如图 3-24(b)),则开始与裂缝测深仪建立联接,并等待裂缝测深仪传输数据。如点击退出,则退

出传输界面。

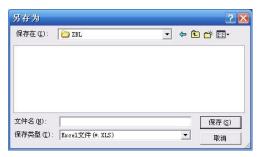


图 3-25 另存为对话框

3) 将裂缝测深仪打开,进入仪器的数据传输界面(图 3-26),按【确定】键,即开始传输检测数据(图 3-27),待PC端接收软件提示数据传输完成后,如图 3-28 所示,计算机将数据保存为一个 Excel 文件并打开。如果选择了生成 ZCW 文件项,则每个采用自动检测方法测试的构件还会生成相应的 ZCW 文件,可以从公司网站(http://www.zbl.cn)下载"超声检测数据处理系统",利用其中的"缝深分析"功能进行进一步分析处理。

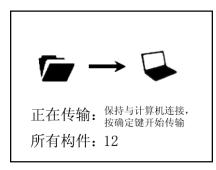


图 3-26

正在传输: 9 所有构件: 12

图 3-27

正在传输: 传输已结束

所有构件: 12

图 3-28

说明:

- 1) 传输时在信息提示框中会显示一些相关信息。如果传输 失败或出现其他错误,则系统会给出相应的提示。
- 2) ZCW文件是U5系列非金属超声检测仪进行裂缝深度测试时所得的数据文件,可以用我公司的"超声数据处理系统"打开并分析、处理、存档、打印。
- 3) 用 F610 裂缝测深仪测试时, 只有当构件中存在"自动"模式测试的裂缝数据时, 才可以生成 ZCW 文件。
- 4) 一个构件对应一个 ZCW 文件,文件名称缺省为构件名称。

3.2.5 数据查阅

开机进入主菜单后按【▲、▼】键选择<mark>数据查阅</mark>选项查看已 经保存的数据。

3.2.5.1 选择构件

已存数据以构件为单位显示在屏幕上,构件的显示顺序是以构件建立的时间先后排列的(先建立的构件在前),进入菜单后默认选中最后建立的构件(图 3-29)。

构件	缝数:时间:	2009-0	示号: 自 02-10 11	:04
2/2页	缝号	深度	方式	点数
000123	001	042	手动	1
LTANG1	101	044	手动	1
BILLIOI	002	055	手动	1
<u>LIANG2</u>	102	057	手动	1
LIANG3	003	042	手动	1
	103	042	手动	1
	004	371	手动	1 1
	104	371	手动	1 4
	005	221	手动	1
	105	220	手动	1

图 3-29

构件	缝数: 时间:		示号: 自 2-10 11	
2/2页	缝号	深度	方式	点数
000123 LIANG1 LIANG2 LIANG3	001 002	218 044	手动	1 1

图 3-30

对于选中的构件(图 3-29 中左边部分显示构件列表,右边

部分显示构件的相关信息及裂缝数列表),系统会自动将该构件的相关信息显示在屏幕的右侧,这些信息包括构件上已测的裂缝个数,自动测量时选用的标号以及最后一个裂缝信息的存储时间。

每页可列出 8 个构件,按【 ▲ 、 ▼ 】键可选择其它的构件, 见图 3-30 和图 3-31。

构件	缝数: 时间:		号: 自 2-09 15	
1/2页	缝号	深度	方式	点数
000000	001	106	手动	1
111111	002	087	手动	1
	003	042	手动	1
222222				
333333				
444444				
555555				1
666666				
777777				

图 3-31

如果该页没有所找的构件,可以直接用【 ◀、▶】键对构件列表翻页,在图 3-29 的状态下按【 ◀】键后的效果如图 3-32 所示。翻页后系统默认选中前页(后页)的第一个构件并列出其基本信息。

构件	缝数: 时间:		示号: 自 2-02 09	
1/2页	缝号	深度	方式	点数
000000	001	066	手动	1
1111111				
222222				
333333				
444444				
555555				1
666666				
777777				

图 3-32

3.2.5.2 查看裂缝信息

选中某构件后,系统会将该构件下前 10 个裂缝的相关信息 (如果该构件下裂缝的个数达到或者超过 10 个)显示在屏幕的右侧(图 3-29),这些信息包括裂缝编号、裂缝深度、检测方式以及自动检测下的测量的次数(点数)。裂缝信息的是以该信息存储的先后顺序排列的。

如果该构件下的裂缝个数超过 10 个,则可以用【确定】键来翻页,显示下 10 个裂缝信息,见图 3-33,同时右边框附件的页数显示为"2"。如果有更多的裂缝信息,可以继续按【确定】键来查看,显示最后一页时,再按【确定】键将回到第一页。

构件	缝数: 时间:		·号:自 2-10 11	
2/2页	缝号	深度	方式	点数
000123 LIANG1 LIANG2 LIANG3	006 106	241 244	手动手动	1
				2

图 3-33

3.2.6 数据删除

当数据已经过期或者已经备份的情况下,可以删除仪器里的数据,为以后的测试工作预留充足的存储空间。本仪器在删除数据时采用整体删除的方式,即所有构件信息以及裂缝测试结果全部一次性删除。

打开仪器进入主菜单,上下移动光标选中数据删除,按【确定】键进入数据删除操作界面如图 3-34.

图 3-34

如图 3-34 所提示,"为了防止误操作,请先按菜单键输入 DELE"。由于输入 DELE 的过程相对复杂,这样就避免了一些非 主动性删除操作,对仪器内的数据起到了一定的保护作用,以免 造成不必要的损失。

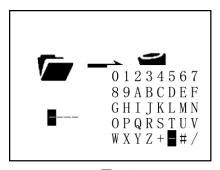


图 3-35

按照图 3-34 的提示,按【菜单】键调出软键盘,如图 3-35,按【▲、▼、▲、▶】键移动光标,在软键盘上选中"D"(图 3-36) 后按【确定】键完成字符"D"的输入,如图 3-37 所示。之后的

字符 "E"、"L"、"E"的输入都是按照 "先选中,再确定"的操作来完成,这里不再详述。

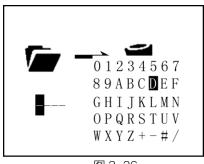


图 3-36

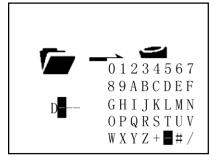


图 3-37

图 3-38

完成了4个字符的输入,如果输入正确,仪器的界面变成图

3-38 所示,此时仪器已经认同删除操作不会是误操作,只需要按照提示,按【确定】键完成删除操作即可,若想放弃删除操作按【返回】键即可退出删除操作界面。

若输入不正确,则系统会提示输入错误并自动退出删除操作。

3.2.7 系统设置

为了使仪器使用更加适应个人习惯和工作环境,通过设置"系统设置"内的参数设置,可以更方便的使用本仪器,提高工作效率。

打开仪器进入主菜单,选中系统设置,按【确定】键进入系统设置界面,如图 3-39 所示。

背光灯: 开启

按键音: 开启 时间: 16:28

时间: 16:28 日期: 2009-03-11

图 3-39

如图 3-39 的系统设置界面,有 4 个参数可以设置,分别是背光开/关设置,按键音开/关设置,系统时间设置(24 小时制)和系统日期设置。按【确定、◀、▶】键都可以确认当前光标所突出显示的参数值,并移动光标到上一个或下一个参数上,如图 3-40 所示。

若需要调整光标所突出的参数,可按【▲、▼】键进行调整,

如图 3-41 所示。

背光灯: 开启

按键音: 开启

时间: 16:28

日期: 2009-03-11

图 3-40

背光灯: 开启

按键音: 关闭

时间: 16:28

日期: 2009-03-11

图 3-41

如果要对设置的结果进行保存(时间、日期需要保存),按【存储】键即可保存设置的参数并退出系统设置。

注意:在系统主菜单界面下(不论光标在什么位置),按【◀】键可实现按键音的打开/关闭操作;按【▶】键可实现背光灯的打开/关闭操作,但是该这种快捷操作系统不会保存,只有进入系统设置界面按【存储】键,这样在下次重启时,这两个参数才是所设置的参数。

第4章 快速入门

4.1 使用前检查

使用前请检查电量是否充足,使用时电量应该在 5%以上,若电量不足请充电后再使用。

接上换能器,并将两个换能器对接,进入检查菜单,启动扫描,听发射换能器能否正常工作,看接收信号是否正常(信号区会充满白色的方块参见图 3-9C)。

4.2 手动检测

选择并清理测量部位→连接换能器→打开仪器进入主菜单→ 选择"手动检测"→按确定键进入测试界面。详细操作请参阅第 = 章的 3.2.2 节。

4.3 自动检测

选择并清理测量部位→连接换能器→打开仪器进入主菜单→ 选择"自动检测"→按确定键进入测试界面。详细操作请参阅第 三章的3.2.3 节。

4.4 数据传输

关闭仪器→将仪器连接到电脑→打开"F610 数据接收软件" 选择端口后点击"开始传输"→打开仪器进入主菜单→选择"数

据传输"→按确定键进入数据传输界面。详细操作请参阅第三章的 3.2.4 节。

4.5 数据查阅

测试完成后按返回键退回到主菜单→移动光标选择"数据查阅"→按确定键进入数据查阅界面。详细操作请参阅第三章的3.2.5 节。

4.6 数据删除

数据备份(传输)完成→进入主菜单→选择"数据删除"→按确定键进入数据删除界面。详细操作请参阅第三章的3.2.6 节。

4.7 系统设置

打开仪器进入主菜单→选择"系统设置"→按确定键进入系统设置界面详细操作请参阅第三章的 3.2.7 节。

附录 1 USB 驱动程序的安装

我公司生产的 F610 裂缝测深仪采用 USB 接口进行数据传输。在第一次进行数据传输时,如果计算机中以前没有安装过相关的驱动程序,则必须先安装 USB 驱动程序,否则无法进行数据的传输。

驱动程序在您购买本公司的产品中附送的光盘中可以找到,此外,您还可以从公司网站的"**下载中心->工具软件**"页中下载"USB **驱动自动安装程序**"(该程序为一个压缩包)。

在光盘的根目录下有一个名为"Usb驱动"的文件夹,运行该文件夹下的 UsbSetup.exe 文件后按照提示进行操作即可完成驱动程序的安装。

如果您是从网上下载驱动程序,则应先将下载的压缩文件解压在硬盘的某个文件夹下,然后运行该文件夹下的UsbSetup.exe文件即可。驱动安装完成后需要重新启动电脑才能正常工作。

注: 我公司的其他产品(钢筋检测仪、楼板厚度检测仪等)的 USB 驱动与裂缝测深仪的完全相同,如果您已经安装了其他产品的驱动程序,则无需再安装。

电话: 010-51290405 传真: 010-51290406 网址: http://www.zbl.cn 版本: Ver2.0-20161006

