ZBL-C310 钢筋锈蚀检测仪

2007年4月12日第一版

目	录
目	录

第一章	概述1
1.1	简介1
1.2	主要功能1
1.3	主要技术指标1
1.4	注意事项2
1.5	责任3
第二章	仪器描述 4
2.1	仪器组成 4
2.2	工作原理4
第三章	快速入门 6
3.1	测试前准备 6
3.2	界面简介7
3.3	测量步骤 8
3.4	数据查看9
3.5	数据传输10
3.6	软件分析 10
第四章	操作指南 11
4.1	开机界面 11
4.2	参数设置11
	4.2.1 数据编号 12
	4.2.2 测点间距 12
4.3	菜单操作 12
	4.3.1 数据查看 12
	4.3.2 数据传输 13
	4.3.3 数据删除 14
	4.3.4 系统设置 14
第五章	维护16
附录	各种钢筋锈蚀判定标准17

第一章 概 述

1.1 简介

ZBL-C310 钢筋锈蚀检测仪是依据 GB/T50344-2004《建筑结构检 测技术标准》中的电化学测定方法(自然电位法)而研制的专用仪器, 采用极化电极原理,通过铜/硫酸铜参考电极来测量混凝土表面电位, 利用通用的自然电位法判定钢筋锈蚀程度;自然电位法是目前采用范 围最广的一种定性测量钢筋锈蚀程度的方法,和表面电阻法等其它方 法比较,有测量操作简单、受周围环境影响小、重复性好、可连续跟 踪等优点。

该产品具有图形化测试界面,测量直观、便捷;自动对测量结果 进行统计,帮助用户判定。技术指标与国外同类仪器相当。

1.2 主要功能

- ◆ 混凝土中钢筋锈蚀状况的现场非破损检测
- ◆ 钢筋锈蚀程度分9级灰度或色彩图形显示

◆ 绘制电位等值线图

◆ 强大的专业分析处理,自动生成检测报告

1.3 主要技术指标

- 1) 测量电位: ±1000mv;
- 2) 测量精度: ±1mv;

1

- 3) 数据存储:70组测量数据;
- 4) 最大面积: 84.24 平方米 (点距 60 cm);
- 5) 测点间距: 1-60cm 可选。
- 6) 供电方式

6节5号电池。

供电时间约 32 小时。

注:供电时间在 25℃环境温度下使用 5 号南孚碱性 (1200mAh)电池时测量结果。如果用户使用其它品种 电池或在其它温度环境下使用时,可能与上述时间有差 异。;

7) 体积重量

仪器体积: 190mm×135mm×52mm

仪器重量: 560g(不带电池)

1.4 注意事项

- 1、仪器使用前请仔细阅读本说明书。
- 2、工作环境要求:

环境温度: 0℃~40℃ 相对湿度: <90%RH 电磁干扰: 无强交变电磁场 不得长时间阳光直射 3、存储环境要求

环境温度: -20℃~+60℃

相对湿度: <90%RH

不得长时间阳光直射

4、避免进水。

5、避免在强磁场环境下使用,如大型电磁铁、变压器附近。

1.5 责任

当用户有以下行为之一或其它人为破坏时,本公司不承担相关责任。

- 1、违反上述工作环境要求或存储环境要求。
- 2、非正常操作。
- 3、擅自打开机壳。
- 4、人为或意外事故造成仪器严重损坏。

第二章 仪器描述

2.1 仪器组成

ZBL-C310 钢筋锈蚀检测仪由主机、硫酸铜电极、信号线、接地线构成,

2.2 工作原理

1、钢筋锈蚀机理

钢筋混凝土中钢筋发生锈蚀主要是电化学反映的结果。混凝 土浇注后,水泥的水化反应产生强碱环境,钢筋会在该环境中发 生氧化反应(又称钝化反应),从而在钢筋的外表面产生一层致密 的氧化层,就是常说的钝化膜。完整的钝化膜能够将钢筋和外部 环境隔离开来,阻止钢筋的锈蚀。

当混凝土受外力破坏或化学侵蚀造成钝化膜局部消失时,失 去保护的钢筋在具有氧气和水的环境中就会逐渐发生锈蚀。 2、半电池自然电位法检测原理

位于离子环境中的钢筋可以视为一个电极,锈蚀反应发生后, 钢筋电极的电势发生变化,电位大小直接反映钢筋锈蚀情况。众 所周知,电池是一个阴极和一个阳极构成,钢筋电极只具有电池 的一半特征,所以被称为半电池。在混凝土表面放置一个电势恒 定的参考电极(硫酸铜电极或氯化银电极),和钢筋电极构成一个 电池体,就可以通过测定钢筋电极和参考电极之间的相对电势差 得到钢筋电极的电位分布情况。总结电位分布和钢筋锈蚀间的统 计规律,就可以通过电位测量结果判定钢筋锈蚀情况。

该方法操作简单、测试速度快,便于连续测量和长时间跟踪, 在各国应用都比较广泛,也是目前国内使用最多的测试方法。

第三章 快速入门

3.1 测试前准备

1、准备硫酸铜电极

双手分别握住硫酸铜电极的上部橡 胶套和有机玻璃管,顺时针旋转橡 胶套,将电极上部和有机玻璃管分 开,将约20克硫酸铜放入有机玻璃 管中;然后向有机玻璃管中倒入约 4/5蒸馏水,将电极上部装入有机玻 璃管中;适当摇晃电极,使硫酸铜 溶液达到饱和状态,且有少量硫酸 铜颗粒存在。

2、确定测区。

图 3.1 硫酸铜电极

测区宜选择结构混凝土有钢筋锈蚀迹象或可能发生钢筋锈蚀的区域,面积不宜大于 5m×5m。

- 3、布置测点
 - a) 在待测构件表面布置测线,X向测线和Y向测线构成正方形的网格,测线的交点即为测点。测点间距一般设置为10cm~50cm。每个测区宜布置30~50个测点,测点距构件边缘距离应大于4cm。
 - b)测点处混凝土表面应平整、清洁。必要时用砂轮或钢丝刷

打磨,并将粉尘等杂物清除。

c)测区混凝土应预先充分浸湿,以减少通路的电阻,但测试时表面不得有液态水存在。可在饮用水中加入适量(约2%)家用液态洗涤剂配制成导电溶液,浸润效果更佳。

图 3.2 布点示意图

4、连接地线

在合适的位置凿开混凝土露出钢筋,钢筋表面应除锈或清除污物,以保证导线与钢筋有效连接。用接地线的电夹把钢筋加好。 5、连接仪器

将接地线的插头插入仪器左侧的地线插座,用信号线将硫酸铜 电极和仪器连接好。握住有机玻璃管,轻轻转动同时向下拉橡 胶套,把橡胶套摘下。

- 3.2 界面简介
 - 1、参数设置

7

仪器开机后,闪过开机 界面,停留在菜单界面, 用户可以设置数据编 号、测点间距等参数。 具体操作请参照第四 章。

|--|

图 3.3 菜单界面

2、测量界面

测量界面由结果显示区和参数区构成。屏幕上部为结果显示区,以图例方式显示每个测点的测量结果,不同的图例 代表不同电位,用户可以在系统设置菜单下进行设置,操 作请参照 4.3.4 节。下部为参数区,分别显示当前坐标、 数据编号、当前测试电位和测试方向等信息。

3.3 测量步骤

- 打开仪器,设置测点间距, 按返回键进入测试界面。
- 2、根据需要,设置测试方向。
- 3、将电极放置在测点上,观察电位值显示,当该值稳定后,按存储键,记录该点电位。光标自动按测试方向进入下一个显示位置。

- 4、充分第3步操作,直到该行(列)测点测试结束。
- 5、按方向键调整光标到下一行(列)第一个测点的显示位置, 重复3、4步操作。
- 6、充分3、4、5步操作,直到整个测区测试结束。

3.4 数据查看

测试结束后按**菜单**键返回菜单界面,按▲、▼ 键移动光标到 数据查看选项,按确定 键进入数据显示界面。

屏幕左侧显示已测数据编号, 右侧显示该编号内测试数据 的统计结果,如图3.5所示。 按▲、▼键移动光标,选择 不同的构件编号,按确定键 显示该构件内的详细测试数 据。按▲、▼、▲、▶键移动 光标,在电位值位置显示当前 光标处的电位值。

按返回键,返回上一级数据显示界面;在数据显示界面;在数据显示界面按案

编号	数	据显示
00005 00004 00003 00002 00001	数据个数 测点距离 平均值 >-250mV >-400mV <-400mV	20 X 10 Y10 44 20% 50% 30%

图 3.5 数据显示界面

3.5 数据传输

将仪器用 USB 传输线与计算机连接,计算机将会弹出一个对 话框提示您要安装新硬件的驱动,驱动安装方式请参考《钢 筋锈蚀检测数据处理软件使用说明书》中的附录"USB 驱动程 序的安装"中的相关内容。

数据传输操作请参考《钢筋锈蚀检测数据处理软件使用说明书》中 3.2.4 第1节"数据传输"的相关内容。

3.6 软件分析

随机配套的《钢筋锈蚀检测数据处理》软件提供了更多高级的 数据分析功能,同时可以自动生成检测报告。有关操作请参考 《钢筋锈蚀检测数据处理软件使用说明书》中的相关内容。

第四章 操作指南

4.1 开机界面

仪器开机后的第一个显示 界面提供了仪器的基本信息,包 括:制造商、仪器型号、仪器名 称、版本号等;剩余电池工作时 间显示在屏幕最下面,提供用户 参考。当检测到电量很低时,仪 器会提示电量过低,并发声示 警,要求尽快更换电池。

4.2 参数设置

开机界面停留约 10 秒后自 动进入菜单界面,菜单界面用来 设置测量参数,进行数据查看、 传输、删除操作以及系统设置。 开机界面闪过之后,该界面自动 出现;也可以在测量状态下按 **菜 阐** 键调出该界面。

菜单操作的统一原则是:

- 1. ▲、▼ 键选择不同的菜单选项;
- 2. 确定 键进入当前选项;
- 3. 菜单 键返回菜单选择状态;
- 4. 返回 键返回测量状态;
- 5. ◀ 开/关键,背光电源切换(在菜单选项有效)。

图 4.1 开机界面

牧 X Y 牧牧牧系 据向向据据据统 号距距示输除置	001 10cm 10cm	

图 4.2 菜单界面

11

4.2.1 数据编号

数据编号应与被测构件建立一一对应关系。每个数据编号中最多存储 13 行×18 列个测点,共 256 个电位值。

数据编号具有自动增加功能,一个测区测量结束,返回菜单 界面时,数据编号自动加1。

需要手动改变数据编号时,调整菜单项为当前选项

- 1. 按确定键,数据编号末位数字下出现选择光标。
- 按▲、▼ 键调整该位数字,按◀、▶ 键选择其它数据位; 该编号调整具有进位和退位功能,最大值为 999。
- 3. 按菜单 键返回菜单选择状态,继续进行其它菜单操作;
- 4. 按返回键返回测量状态。

4.2.2 测点间距

X 向间距、Y 向间距分别用来设置测点 X、Y 方向的间距,用 户根据构件情况,按照一定间距布置测点,一般情况下两个值应 一致。

需要改变间距设置时,调整菜单项为当前选项

1. 按确定键,间距值下面出现选择光标。

2. 按▲、▼ 键调整该位数字。

3. 按菜单 键返回菜单选择状态,继续进行其它菜单操作;

4. 按返回键返回测量状态。

4.3 菜单操作

4.3.1 数据查看

在菜单界面, 按▲、▼ 键移动

光标到数据查看选项,按确定

编号	数据显示	
00005 00004 00003 00002 00001	数据个数 测点距离 平均值 ≻-250mV ≻-400mV <-400mV	20 X 10 Y10 44 20% 50% 30%
H		

图 4.4 数据显示界面

键进入数据显示界面。

屏幕左侧显示已测数据编号,右侧显示该编号内测试数据的 统计结果,如图 4.3 所示。数据编号按照倒序方式显示,即 最后测试的构件最先显示。统计内容包括:

数据个数——数据编号内存储的测点数量。

测点距离——该构件 X 向、Y 向测点的间距。

平均值—— 该构件内所有测点电位的平均值。

锈蚀概率统计——目前国内大多使用冶研院标准,该标 准规定,测点电位>-250mV时,钢筋没有锈蚀;电 位在-250mV~-400mV之间时,钢筋可能锈蚀;电位 <-400mV时钢筋已经锈蚀。仪器根据这样的标准, 对三个区间内的测点比例作了统计,供用户参考。 注意,冶研院标准与《建筑结构检测技术标准》

(GB/T50344-2004)的判定条件有所不同,如何选

择请参考实际情况。

按▲、▼ 键移动光标,选择 不同的构件编号, 右侧的统计 结果同时刷新。

按**确定**键显示该构件内的详 细测试数据。按▲、▼、【、 ●键移动光标,在电位值位置 显示当前光标处的电位值。

按返回键,返回上一级数据显示界面;在数据显示界面按菜 单键返回菜单界面。

4.3.2 数据传输

用于将仪器内存储的所有数据传输到计算机。

当计算机第一次使用我公司同类检测设备进行数据传输时, 需要安装驱动程序,具体操作请参考《钢筋锈蚀检测数据处理软 件使用说明书》中的附录"USB 驱动程序的安装"中的相关内容。

数据传输操作请参考《钢筋锈蚀检测数据处理软件使用说明 书》中 3.2.4 第1节"数据传输"的相关内容。

4.3.3 数据删除

建议用户确定机内数据已全部 传输到计算机后,再进行数据删除 操作。数据删除后不可恢复。

在菜单界面, 按▲、▼ 键移动 光标到数据删除选项,按确定 键进 入数据删除界面。此时仪器需要用 户确认是否确定要进行数据删除操 作,按确定键开始数据删除,按返回键取消数据删除操作,返 回菜单界面;数据删除后自动返回菜单界面。

图 4.6 数据删除界面

4.3.4 系统设置

系统设置用来设置电位值的 图例。不同的图例代表不同的电位 值,图例黑色面积越小,表示电位 值越大,反之,表示电位值越小。

系统设置			
•	> 50mV		
•	< OmV	最大值 <u>50mV</u>	
•	<- 50mV	最小值 -400mⅤ	
	<-100mV		
	<-150mV		
	<-200mV		
	< -250 mV		
	<-300mV		
	<-350mV		
	<-400mV		

用户根据测区内图例的分布情况可以轻松判断钢筋锈蚀发生的 可能性大小。 图 4.7 系统设置界面

在菜单界面,按▲、▼ 键移动光标到系统设置选项,按**确定** 键进入系统设置界面。此时光标停留在最大值位置,按**④、**▶键 移动光标在最大值和最小值之间切换,按▲、▼ 键以 10mV 步距 增减光标所在值。

当最大、最小值调整时,左侧不同图例代表的电压范围也在 同步更新。

第五章 维护

6.1 使用前检查

- 1、检查电极是否破损。
- 2、开机检查电量是否充足,如果电量显示小于 2 小时,请 及时更换电池。
- 6.2 清洁

请勿将仪器及配件放入水中或用湿布擦洗!

请勿用有机溶剂擦洗仪器及配件!

请用干净柔软的干布擦拭主机及电极。

请用干净柔软的毛刷清理信号线插头及插座。

附录 各种钢筋锈蚀判定标准

各国对钢筋锈蚀的研究都在不断发展,也相继制定了各 自的判定标准,下面摘录了一些国内外主要锈蚀判定标准,以 供参考。

1、国内标准

标准名称	测试方法	判别标准 (mV)
中国冶金部部颁标准	单电极法	>-250,不腐蚀; -250~400,可能
		腐蚀; <-400, 腐蚀
中国冶金部部颁标准	双电极法	两电极相距 20cm, 电位梯度为 150~
		200 时,低电位处腐蚀
建筑结构检测技术标准	单电极法	>-200, 锈蚀概率 5%; -200~-
(GB/T50344-2004)		350,锈蚀概率 50%; -350~-500,
		锈蚀概率 95%

2、国外标准

标准名称	测试方法	判别标准 (mV)
ASTMC876(美国)	单电极法	>-200,95%腐蚀;-200~-350,50%腐
		蚀; <-350,5%腐蚀
日本锈蚀诊断草案	单电极法	>-300,不腐蚀;局部<-300,局部腐
		蚀; 全部<-300,全部腐蚀
印度	单电极法	>-300,95%腐蚀;-300~-450,50%腐
		蚀; <-450,5%腐蚀
西德标准	双电极法	两电极相距 20cm, 电位梯度为 150~
		200 时,低电位处腐蚀

仪器制造商:北京智博联科技有限公司

- 地 址:北京市西城区德外大街 11 号 B 座 403
- 联系电话 : 010-62366228
- 传 真: 010-62367043

仪器供应商: