

ZBL-RBDD 多功能混凝土钢筋检测仪 ZBL-R63DA 混凝土钢筋检测仪 ZBL-C31DA 钢筋锈蚀检测仪 使用说明书

目 录

本说明书中的约定IV				
第	1	章	概述1	
	1.1	简	介1	
	1.2	主要	要功能及特点1	
		1.2.1	主要功能1	
		1.2.2	主要特点2	
	1.3	主要	要技术指标2	
	1.4	注	意事项3	
		1.4.1	使用说明书3	
		1.4.2	工作环境要求:3	
		1.4.3	存储环境要求	
		1.4.4	其他要求4	
	1.5	仪	器的维护及保养4	
		1.5.1	电源4	
		1.5.2	充电4	
		1.5.3	充电电池5	
		1.5.4	清洁5	
	1.6	责	Έε	
第	2	章	仪器描述7	

I

2.1	仪器组	且成	7
2	.1.1	主机	7
2	.1.2	传感器与电极	9
2	.1.3	配件	.11
2.2	测试原	夏理	.12
2	.2.1	钢筋的电磁检测原理	.12
2	.2.2	锈蚀检测单电极法与双电极法	.12
第3章	〕 多	功能混凝土检测软件	14
3.1	软件籠	奇介	.14
3	.1.1	开机界面及主菜单	.14
3	.1.2	按键操作	.15
3.2	数据使	专输	.16
3	.2.1	USB 传输	.16
3	.2.2	GPRS 传输	.17
3.3	系统说	2置	.19
3.4	钢筋测	则试	.20
3	.4.1	普通测试	.20
3	.4.2	网格测试	.31
3	.4.3	剖面测试	.42
3	.4.4	数据显示	.44
3	.4.5	钢筋数据删除	.47
3	.4.6	现场测试	.48
3.5	钢筋锁	秀蚀测试	.56
3	.5.1	锈蚀测试主菜单	.56

	3.5.2	参数设置	.56
	3.5.3	测量界面	. 59
	3.5.4	数据显示	.60
	3.5.5	数据删除	.61
第 4	章	快速操作指南	63
4.	1 钢	筋测试	.63
	4.1.1	现场准备	.63
	4.1.2	连接主机-传感器	.63
	4.1.3	开始测试	.64
	4.1.4	数据传输	.64
	4.1.5	数据分析处理	.64
	4.1.6	数据删除	.64
4.	2 锈	蚀测试	.65
	4.2.1	测试前准备	.65
	4.2.2	开始检测	.68
	4.2.3	数据查看	.68
	4.2.4	数据传输	. 69
	4.2.5	数据分析	.69
	4.2.6	数据删除	.69
4.	3 现	场检测时的注意事项	. 69
	4.3.1	钢筋测量的一般原则	. 69
	4.3.2	锈蚀检测注意事项	.70

<

本说明书中的约定

- 1. 灰色背景、带黑色方框的文字
- 2. 表示界面上的一个按钮,如:确定钮。
- 3. 仪器面板上的按键均用【】表示,如:【存储】键。
- 白色背景、带黑色方框的文字表示 Windows 软件菜单命令, 其中"→"表示菜单级间的分割符,如文件→打开表示文件 菜单下的打开菜单项命令。
- 灰色背景、不带方框的文字表示屏幕上选项或菜单名称。如 选择参数设置中的构件选项。
- 6. 标志 为需要特别注意的问题。
- 除了本说明书中介绍的内容之外,用户在使用仪器的过程中, 会自动显示一些提示信息,请按提示信息操作。
- 本说明书中的软件界面及照片仅用作示意,随着软件升级和 产品的不断改进可能会发生变化,恕不另行通知。

注意:本说明书为 ZBL-R800 多功能钢筋检测仪使用 说明书,ZBL-R630A 混凝土钢筋检测仪的使用说明详见钢筋检 测部分,ZBL-C310A 钢筋锈蚀检测仪使用说明详见锈蚀检测部 分。

第1章 概述

1.1 简介

ZBL-R630A 混凝土钢筋检测仪可进行钢筋保护层厚度、钢筋直径、钢筋位置、钢筋间距检测。

ZBL-C310A 钢筋锈蚀检测仪可进行钢筋锈蚀程度以及锈蚀分布检测。

ZBL-R800多功能钢筋检测仪是一种便携式、一体化、多功能钢筋检测设备。同时具备 ZBL-R630A 混凝土钢筋检测仪和 ZBL-C310A 钢筋锈蚀检测仪的功能。

1.2 主要功能及特点

1.2.1 主要功能

- 1) 钢筋检测和锈蚀检测双重功能;
- 2) 确定钢筋位置、走向及分布;
- 3) 测量钢筋的保护层厚度;
- 4) 测定钢筋直径;
- 5) 保护层厚度合格情况自动判定;
- 6) 混凝土钢筋锈蚀状况的单电极检测;
- 7) 混凝土钢筋锈蚀状况的双电极检测;
- 8) 钢筋锈蚀程度最大分 10级灰度或色彩图形显示;

- 9) 检测数据的保存、查看和传输;
- 10) 强大的专业分析处理,自动生成检测报告。

1.2.2 主要特点

- 1) 数据的 U 盘存储;
- 2) 内置简要功能介绍和操作说明,方便随时查看;
- 数据的 GPRS 方式传输,方便、快捷;(只有配置了 GPRS 模块的仪器才有此功能)。
- 4) 绘制锈蚀电位等值线图;
- 5) 柔和的背光效果;

1.3 主要技术指标

项目	指标
保护层测量范围 (钢筋直径Φ 6mm~Φ50mm)	第一量程: 3mm~98mm 第二量程: 3mm~196mm
锈蚀电压检测范围	-1000mv~+1000mv
锈蚀电压检测精度	0.1mv
供电方式	内部锂电池供电(29.6Wh)
工作时间	待机时间: 38 小时
整机重量	0.9kg
整机体积	212mm×134mm×50mm
显示器	160*128LCD 显示器
USB 🗆	使用U盘进行数据传输,建议U盘容量<=2G。

表 1.1 主要技术指标

3

1.4 注意事项

1.4.1 使用说明书

为了更好地使用本检测仪,请您在使用仪器前仔细阅读使用说明书。

1.4.2 工作环境要求:

环境温度: 0℃~40℃

相对湿度: <90%RH

不得长时间阳光直射

防腐蚀:在潮湿、灰尘、腐蚀性气体环境中使用时,应采取 必要的防护措施。

1.4.3 存储环境要求

环境温度: -20℃~+60℃

相对湿度: <90%RH

不用时请将仪器放在包装箱中,在通风、阴凉、干燥环境下 保存,不得长时间阳光直射。

若长期不使用,应定期通电开机检查。

1.4.4 其他要求

1.4.4.1 避免进水。

1.4.4.2 避免磁场

避免在强磁场环境下使用,如大型电磁铁、变压器附近。

1.4.4.3 防震

在使用及搬运过程中,应防止剧烈震动和冲击。

1.5 仪器的维护及保养

1.5.1 电源

本仪器采用内置专用可充电锂电池进行供电,使用时请注意 电量指示,如果电量不足时,则应尽快采用外部电源(交流电源 或外部充电电池)对本仪器供电,否则可能会造成突然断电导致 测试数据丢失甚至损毁系统;如用交流电源供电,则应确保外接 电源为 AC220±10%V,否则会造成 AC-DC 电源模块甚至仪器 的损坏。禁止使用其他电池、电源为本仪器供电。

1.5.2 充电

用本仪器配套的充电器为内部电池充电时,只需将电源插头 端接到 AC220±10%V 的插座中,直流输出端接到仪器的电源插 口中即可。充电器上的充电指示为红色,表示正在对仪器内置电 池充电;当指示灯由红色变成黄色时,表示内置电池充满,此时 应及时拔出充电器,以免对电池过度充电影响电池使用寿命。

《▲◆◆〉注意:为了保证完全充满,请保持连续充电 6~8 小时, 同时不要在超过 30℃的环境下对仪器充电。

仪器长期不用,充电电池会自然放电,导致电量减少,使用 前应再次充电。充电过程中仪器和 AC-DC 电源会有一定发热, 属正常现象,应保持仪器、AC-DC 电源或充电器通风良好,便 于散热。

《《《》注意:不得使用其它充电器对仪器充电,否则有可能对 仪器造成破坏。

1.5.3 充电电池

充电电池的寿命为充放电 500 次左右,接近电池充放电寿命时,如果发现电池工作不正常(根本充不上电、充不满或充满之后使用时间很短),则很可能是充电电池已损坏或寿命已到,应与我公司联系,更换新的电池。禁止将电池短路或靠近高温热源。

1.5.4 清洁

每次使用完本仪器后,应该对主机、传感器等进行适当清洁, 以防止水、泥等进入接插件或仪器,从而导致仪器的性能下降或 损坏。

注意:请勿将仪器及配件放入水中或用湿布擦洗!
 注意:请勿用有机溶剂擦洗仪器及配件!
 请用干净柔软的干布擦拭主机。
 请用干净柔软的毛刷清理插座。

1.6 责任

本仪器为精密检测仪器,当用户有以下行为之一或其它人为 破坏时,本公司不承担相关责任。

- (1)违反上述工作环境要求或存储环境要求。
- (2)非正常操作。
- (3)在未经允许的情况下擅自打开机壳,拆卸任何零部件。
- (4)人为或意外事故造成仪器严重损坏。

第2章 仪器描述

2.1 仪器组成

ZBL-R800 由主机、钢筋传感器、硫酸铜电极、双电极手柄、 钢筋信号线、锈蚀信号线、U 盘、充电器组成。

ZBL-R630A 由主机、钢筋传感器、钢筋信号线、U 盘、充 电器组成。

ZBL-C310A 由主机、硫酸铜电极、双电极手柄、锈蚀信号 线、U 盘、充电器组成。

2.1.1 主机

图 2-1 是 R800 混凝土钢筋检测仪主机的图例说明, 仅供参考。

(A)正面

图 2-1 主机外观示意图

2.1.1.1 键盘

键盘位于主机上面板,各键的功能如表 2.1 所示。

键名	功能说明
【菜单】	在操作菜单中返回到前一级菜单页面
【返回】	返回当前界面上一个菜单
[▲、▼、	上、下、左、右方向功能键,转移到相应菜单和选项,参
∢、 ▶]	数的切换、增加和减少等
【存储】	检测数据、时间、编号、参数等的存储
【确认】	参数的确定、选择和检测方向的更改等
[🕑]	电源键,仪器电源的开启和关闭

表 2.1 功能键一览表

2.1.1.2 显示屏

显示屏安装在仪器上面板。用于显示操作界面、检测数据以 及信息交互等。

2.1.1.3 充电接口

仪器电池的充电接口,使用随仪器带的电池充电器对仪器进

行充电,为保证仪器电池的充电完全,充电时间建议在6~8小时。

2.1.1.4 USB 接口

位于仪器左侧挡板上,是用于连接仪器 U 盘的接口,将仪器 附带的专用 U 盘插接在 USB 接口上,通过仪器的"数据传输" 功能可以将测试数据传输到 U 盘中,然后将 U 盘中数据使用计算 机软件进行数据的分析。

2.1.1.5 传感器接口

用于接插传感器信号线。

2.1.1.6 铭牌

仪器背面、传感器背面均有铭牌,内容包括公司名称、生产 日期、仪器出厂编号等;

2.1.2 传感器与电极

2.1.2.1 钢筋传感器

R800及 R630A 可配置两种传感器——多参数传感器(以下简称"大探头")及单参数传感器(以下简称"小探头")。多参数传感器采用一体化设计,如图 2-2(a)所示,可以实时、准确地扫描钢筋,记录传感器移动的位移量。传感器前进时扫描钢筋,后退时擦除钢筋。**单参数传感器只适用于普通测试**,可以实时、 准确地扫描钢筋,但不可记录传感器移动的位移量。

传感器具有指向性,当传感器轴线与钢筋走向平行时最灵敏, 反之,当传感器轴线与钢筋走向垂直时,探测信号最弱,所以,

在测量钢筋时,应保持传感器轴线与钢筋走向平行,在垂直于钢 筋走向的方向移动传感器进行扫描测量。

2.1.2.2 锈蚀硫酸铜电极

1()

硫酸铜电极(如图 2-3 所示)有如下特点:电极电位稳定, 标准条件下对甘汞电极的电位为 70±3mV,符合理论值,彼此间 电位差小于±1mV;电极不易极化。硫酸铜晶体充分溶解后,电极 内阻小于 3kΩ;电极寿命长,一次灌液可以使用很长时间,只要 腔体不损坏,可以后续补液。

图 2-3 硫酸铜电极

2.1.3 配件

2.1.3.1 电源充电器

电源充电器的输入插头连接 100~240V 交流电源,输出插 头接入主机的充电插口,为其内部锂电池充电。

2.1.3.2 锈蚀双电极手柄

在使用锈蚀检测的双电极检测功能时,需要将两个硫酸铜电极安装在双电极手柄(图 2-4)上,手柄固定间距为 20cm。

图 2-4 锈蚀双电极手柄

2.1.3.3 信号线

仪器的信号线包括:钢筋传感器信号线、锈蚀电极信号线两种,两种信号线的接口均在仪器左侧挡板处。

2.1.3.4 其他附件

详见仪器装箱单。

12

2.2 测试原理

2.2.1 钢筋的电磁检测原理

仪器通过传感器向被测结构内部局域范围发射电磁场,同时 接收在电磁场覆盖范围内铁磁性介质(钢筋)产生的感生磁场, 并转换为电信号,主机系统实时分析处理数字化的电信号,并以 图形、数值、提示音等多种方式显现出来,从而准确判定钢筋位 置、保护层厚度、钢筋直径,如图 2-5。

图 2-5 钢筋的电磁检测原理

2.2.2 锈蚀检测单电极法与双电极法

单电极法采用半电池自然电位法,将位于离子环境中的钢筋 视为一个电极,锈蚀反应发生后,钢筋电极的电势发生变化,电 位大小直接反映钢筋锈蚀情况。众所周知,电池是一个阴极和一 个阳极构成,钢筋电极只具有电池的一半特征,所以被称为半电 池,如图 2-6 所示。

图 2-6 单电极法

图 2-7 双电极法

双电极法(图 2-7)采用的也属于自然电位法。只不过单电 极法适用于钢筋端头外露的结构,而双电极法则适用于钢筋不外 露的结构。

单电极法是在混凝土表面放置一个电势恒定的参考电极(硫酸铜电极或氯化银电极),与钢筋电极构成一个电池体,然后通过测定钢筋电极和参考电极之间的相对电势差,得到钢筋电极的电位分布情况。总结电位分布和钢筋锈蚀间的统计规律,就可以通过电位测量结果来判定钢筋锈蚀情况。

双电极法则需在混凝土表面放置一个间距恒定的双电极。将 两参比电极沿钢筋混凝土结构表面移动,若两处钢筋处于相同状 态则无电位差;若处于不同状态,如一处锈蚀,一处未锈蚀,则 可测出电位差,并可依此判断各处钢筋是否锈蚀。

第3章 多功能混凝土检测软件

3.1 软件简介

ZBL-R800多功能混凝土钢筋检测仪兼钢筋测量和锈蚀检测双重功能,可以对 \$ 6—\$ 50 钢筋的混凝土保护层厚度以及钢筋直径进行检测;还可以检测和描述出钢筋锈蚀情况。下面分别对钢筋和锈蚀检测进行介绍。

3.1.1 开机界面及主菜单

仪器开机后的第一个显示界面为如图 3-1(A)所示界面,提 供了仪器的基本信息,包括:制造商名称、仪器型号、仪器名称、 版本号,日期等信息;开机界面停留约2秒钟后自动进入到仪器 主菜单界面,如图 3-1(B)。

(A)开机界面

(B)主菜单

主菜单包括钢筋测试、锈蚀测试、数据传输、系统设置四个 选项,采用图标方式显示。反色显示代表当前选中选项,正常显

图 3-1 开机界面及主菜单

示代表未被选中选项。

钢筋测试和锈蚀测试分别进行钢筋检测和锈蚀检测,数据传输可将数据传输到 U 盘或通过 GPRS 发送到服务器,系统设置可以设置仪器的系统时间并查看仪器当前的电量,在后续章节将分别对其进行详细说明。

3.1.2 按键操作

仪器的界面和控制操作都通过键盘面板的按键来完成:

- 使用【▲、▼、4、▶】功能键来移动选项框,选中相应
 选项按下【确认】键进入相应子菜单,同时【▲、▼、4、
 - ▶】还完成参数的更改和选项的切换功能;
- 2) 当菜单项的左侧出现帮助菜单标志 ●时,按下【●】功能 键可查看帮助信息,如图 3-2 所示;

(A) 预设直径功能简介

(B)构件编号功能简介

图 3-2 查看帮助信息

3) 仪器默认开机关闭液晶背光,仪器背光可以加强液晶的 识别度,让用户更好的辨识显示器的内容。进入仪器的 菜单界面或菜单项功能简介界面后,使用【▶】键可以选

择开启或者关闭液晶背光。

- 4) 按【确认】键选中具体选项;
- 5) 按【存储】键存储数据和参数。
- 6) 按【返回】键返回上一界面,按【菜单】键返回主菜单。
- 7) 【 😃 】 为仪器电源开关。

3.2 数据传输

数据传输分为 USB 传输和 GPRS 传输,如图 3-3 所示, USB 传输将仪器所测得的数据传输到 U 盘,然后通过 U 盘传输 到计算机上进行软件分析;GPRS 传输将仪器测得的数据通过 GPRS 发送到服务器,用户可以通过客户端软件登录到服务器进 行数据传输任务的建立和测量数据的接收、查看和分析。

在数据传输过程中钢筋数据和锈蚀数据分开发送,由用户手动选择需要发送的数据进行传输,其中钢筋数据的存储文件后缀为".801",锈蚀数据的存储文件后缀为".802"。

图 3-3 数据传输方式选择界面

3.2.1 USB 传输

16

将随仪器附带的 U 盘插入到仪器左侧挡板的 USB 接口中,

然后选择主界面中的"数据传输"选项,进入传输方式选择界面 (如图 3-3 所示),按【 ▲ 】、【 ★ 】选择 USB 传输,按下【确认】 键,弹出图 3-4A 所示的 USB 传输选项界面,选择 传输钢筋数据 或传输锈蚀数据后按下【确认】键,仪器会自动启动 U 盘电源, 等待仪器传输完成提示"请拔出 U 盘"的时候,将 U 盘从仪器的 USB 插口中拔出,再按任意键即可返回 USB 传输选择界面。关 于分析软件的使用请参考《软件使用说明书》。其中钢筋数据的存 储文件后缀为".801",锈蚀文件后缀为".802"。传输完后是否 自动删除数据,仪器有提示。

图 3-4 USB 传输

注意:请不要在数据传输过程中拔出 U 盘,以免造成数据传输出错。

3.2.2 GPRS 传输

选择主界面中的"数据传输"选项,进入传输方式选择界面 (如图 3-3 所示),按【▲】、【→】选择 GPRS 传输,按下【确 认】键,弹出图 3-5A 所示的 GPRS 传输选项界面,选择传输钢

筋数据或传输锈蚀数据后按下【确认】键,仪器将启动 GPRS 模块的电源并进行网络连接,在 GPRS 连接过程中,按下【返回】 键可取消 GPRS 连接并退出 GPRS 传输过程。GPRS 连接成功 后将自动发送所选择的数据,数据发送过程中可按下【返回】键 取消数据发送并退出 GPRS 传输过程。

图 3-5 GPRS 传输

数据传输完成后提示"发送成功"并提示是否进行数据备份 操作,如图 3-5(B)所示,此时表示 GPRS 发送数据成功并由用 户手动选择是否进行数据的备份操作,此时按下【确认】键则进 入 USB 数据备份界面,如图 3-5(C)所示,等待 USB 传输完成 后按任意键进入如图 3-5(D)的数据删除界面,待数据删除完成后

返回到如图 3-5(A)所示的 GPRS 传输选择界面。在图 3-5(B) 中若按下【→】键则不进行数据备份,直接进入数据删除操作。

《《》》说明:由于 GPRS 连接和传输过程比较慢,请耐心等 待仪器提示,若长时间提示"GPRS 正在连接"或"正在发送数 据",可按下【返回】键取消连接或数据发送。

GPRS 模块为选配件,只有配备了 GPRS 模块的仪器才可 使用 GPRS 传输!

《《》》 建议:在 GPRS 数据传输完成后进行 USB 数据备份 操作。

3.3 系统设置

进入图 3-6 所示系统设置界面后,动态显示当前时间,并可 以修改系统时钟的年、月、日、小时、分钟、秒。时钟采用 24 小 时进制。同时在系统设置中也可以查看电池剩余电量。

图 3-6 系统设置

操作方法:按下【确认】键进入修改状态,再按【◀】、【▶】 键将光标调整到需修改的时间下面,按【▲】、【★】,可进行加1 或减1操作。修改完后按【存储】键,进行时间存储设置并返回

主菜单;若不需更改目前时间设置,请直接按【返回】或【菜单】 键返回主菜单。

3.4 钢筋测试

钢筋测试分为普通测试、剖面测试和网格测试三种;在图
3-1(B)所示主菜单界面按【 ▲ 】、【 ▼ 】键选择钢筋测试,按【确
认】键进入钢筋检测主菜单界面,如图 3-7 所示。

图 3-7 钢筋测试菜单选项

3.4.1 普通测试

普通测试是钢筋测试中的最基本的一种测试功能。使用该功 能可以较为精确的测出钢筋保护层厚度、钢筋直径、判断是否超 标等。

检查是否连接好主机-传感器。在图 3-7 所示界面,按【▲】、 【★】键将™调至"普通测试"上,按【确认】进入"普通测试" 功能,出现参数设置界面(图 3-8),此时光标停留在"构件编号" 处。

峰至 在进入参数设置界面后会启动电量检测,当检测到电量

过低时,仪器会在界面中部显示"电量不足,请充电"的提示, 并发声示警,要求马上充电,此时用户不应继续任何设置或测试, 否则数据易丢失或出错。应该马上返回到主菜单界面后关机,并更 换电池或充电。

3.4.1.1 参数设置

进入图 3-8 所示的界面后,仪器处于参数选择状态。按【▲】、 【★】键选择需要设置的参数项(该项左侧的方框变黑▲),按【确 认】键启动相应的参数设置功能。所有参数设置完后选择"进入 测试"进入普通测试功能界面;或者按【菜单】键直接返回主菜 单。

在参数设置界面按下【▲】、【→】键选中相应项后,其左侧 出现帮助菜单标志◀,此时若按下【◀】则可进入其对应的功能简 介界面进行快捷键及功能简介的查看,在功能简介界面按下【菜 单】或【返回】键则可重新返回参数设置界面;

图 3-8 参数设置

各参数的定义及设置方法如下:

图 3-9 构件编号设置界面

1. 构件编号

构件编号可以由六位数字、字母或符号混合组成。出厂默认 构件编号为000000。重新开机进入参数设置界面时,默认构件 编号为已存储的最后一个构件编号的末位数字增加1(增加的顺 序按图 3-9 所示的软键盘排列顺序直至末位符号为"/"为止), 例如:存储的最后一个构件为300009,则重新进入参数设置界 面时,默认的构件编号为30000A。

在图 3-8 界面上按【▲】、【→】键将光标调至构件编号处, 按【确认】键,出现图 3-9 所示的界面,此时光标处于构件编号 的左起第一个字符下方,按【〈】、【〉】键调整至任意一位需要修 改的字符处,再按【→】键弹出软键盘的左上角出现光标,按【▲】、 【→】、【〈】、【〉】键选择需要输入的字符,按【确认】键,该字符 出现在构件编号光标位置上,同时构件编号处的光标自动下移一 位,软键盘上的光标消失。若继续修改则按上述方法进行重复操 作。当构件编号修改完毕,按【存储】键存储该编号,该构件编 号处光标消失,并自动返回到图 3-8 所示的参数设置界面。

2. 预设直径

设定被测钢筋的直径,可设置范围为6~50mm,默认值为 上一次存储构件的设定值。进入该功能后,按一次【▲】或【→】 键可以将该值增大或减小1个钢筋规格,长时间按【▲】或【→】 键,该值连续增大或减小。设定完毕,按【存储】或【确认】键 存储,该处光标消失,并自动返回到"参数设置界面"。

3. 设计厚度

设定被测钢筋的设计保护层厚度,可设置的范围为 10~ 99mm,默认值为上次存储的构件的设定值。进入该功能后,按 一次【▲】或【★】键可以将该值增大或减小 1,长时间按【▲】 或【★】键,该值连续增大或减小。设定完毕,按【存储】或【确 认】键存储,该处光标消失,并自动返回到图 3-8 所示的参数设 置界面。

4. 构件类型

被测构件的类型,分为:"梁"、"板"两种。按【▲】、【→】 键在"梁"、"板"之间切换。该项用于根据建筑类型自动判断测 得的厚度值是否超标。

5. 最小厚度

快速普查时被测钢筋所允许的最小保护层厚度;范围为0~ 99mm,默认值为0mm。该功能在使用时(设置不为0的数值), 若检测到被测钢筋的保护层厚度小于该设定值时,仪器报警、提 示,而并不显示、存储被测保护层厚度。进入该功能后,按一次 【▲】或【★】键可以将该值增大或减小1,长时间按【▲】或【★】 键,该值连续增大或减小。设定完毕,按【存储】或【确认】键 存储,该处光标消失,并自动返回到图3-8所示的参数设置界面。

\min 注意:当该参数设置为0时,关闭此功能。

6. 数据修正

为减小相邻并排钢筋对被测钢筋的保护层厚度测量值的影响, 可通过设定相邻钢筋到被测钢筋的中心距,仪器对测试结果值自 动进行修正,提高测试精度。分为"手动"、"无"两种选项,开 机默认为"无",表示不进行修正;"手动"表示按人工设定的相 邻钢筋中心间距进行修正,并显示修正后的测量结果。

进入该功能后,按【▲】、【★】键可在"手动"、"无"之间 切换;如果选择了"手动",则右边出现数值可输入项,范围为 50~110mm。按【▶】键可将光标移动到数值处,按一次【▲】 或【★】键可以将该值增大或减小1,长时间按【▲】或【★】键, 该值连续增大或减小。设定完毕,按【存储】键存储,该处光标 消失,并自动返回到图3-8所示的参数设置界面。

《 注意:使用该功能并不能完全消除相邻钢筋对测试结果的影响!

7. 探头选择

R800及 R630 配备大、小两种探头,详参 2.1.2.1 节。进入该功能后,按【▲】、【→】键可在"大"、"小"之间切换;选择"小"即为小探头,"大"即为带路径的传感器。设定完毕,按【存储】键存储,该处光标消失,并自动返回到图 3-8 所示的参数设置界面。

《《《》注意:如果用户的选择与实际使用不一致,则测出的厚度值会偏差几个mm。

3.4.1.2 测试界面

在图 3-8 界面上按【▲】、【→】键将光标调至进入测试处, 按【确认】键,出现图 3-10 所示的测试界面。按【返回】键, 则返回到图 3-8 所示的参数设置界面;按【菜单】键,回到图 3-1 (B)的主菜单界面。

1. 界面介绍

1) 滚动条

提示当前传感器与钢筋的相对距离。

- a) 空白 -- 传感器有效感应范围内无钢筋。
- b) 增长 -- 传感器正在向靠近钢筋的方向移动。
- c) 缩短 -- 传感器正在向远离钢筋的方向移动。

2) 信号值

当前传感器接收到的信号幅度值,信号值越大,传感器离钢 筋越近。

3) 当前厚度

当前传感器与钢筋相对位置的等效值(单位mm),该值越大 传感器离钢筋越远,当等效值超过传感器测量范围时,该值显示0, 当前厚度的最小值即为保护层厚度值。(如果用户启用了数据修正 功能,该值只显示测量值,不显示修正后的值)。

4) 保护层

显示自动锁定的混凝土保护层厚度测量值 (单位 mm)。(如 果用户启用了数据修正功能,保护层厚度则显示测量修正后的值)。

5) 钢筋直径

显示被测的钢筋直径测量值 (单位 mm)。按【▲】键进行直径及保护层厚度测量 (此时不需输入被测钢筋直径),详见 3.4.1.3节,此时屏幕显示:

保护层 ▶*** (实测钢筋直径的保护层厚度值) 钢筋直径 *** (实测的钢筋直径)

6) **存储数**

当前构件编号中已存储的保护层厚度值个数。

7) 合格率

当前构件中已存储的所有厚度值按(GB50204-2002)规范 要求的合格点的比例。

8) 超标提示

当测试的保护层厚度超过规范要求的范围时,出现"!"符号 提示,否则为空白。

9) 构件名

显示当前的构件编号。

10) 状态信息栏

- a) 大小量程:用■和□代表第一、第二量程;
- b) 存储方式:用 "A"和 "M"分别代表 "自动存储" 和 "手动存储";
- c) 测量方式:用"三"和空白分别代表选择"密集钢 筋测量方式"和"一般测量方式";
- d) 修正方式:用"C"和空白分别表示有、无修正。

2. 热键功能

在测试界面上有以下几个功能,可以通过快捷键来进行操作 并执行相应的功能。在图 3-8 所示界面选中进入测试后,按下【 ◀ 】 键查看快捷键及功能简介。

1) 量程选择

选择仪器的量程,分为第一、二两个量程。其中,第一量程, 用于被测保护层的厚度较小的场合;第二量程,用于被测保护层 厚度较大的场合,分别用**■**和□表示。

在图 3-10 所示的测试界面上按【▶】键进行切换,状态标示 栏的相应位置处显示■或□。每次进入该界面,默认为"第一量程"。

2) 存储方式

选择测试结果的存储方式,分为自动和手动存储两种,分别 用"A"和"M"标记。手动存储——按【存储】键时,仪器才存 储保护层厚度及钢筋直径的测量值;自动存储——仪器自动将保 护层厚度测量结果保存在当前构件内。

在图 3-10 所示的测试界面上,按【4】键进行切换,状态标

示栏的相应位置处显示 "A" 和 "M"。开机默认为 "手动存储"。

3) 测量方式

仪器对密布钢筋分辨能力的选择,分为"一般测量方式"和 "密集钢筋测量方式"。分别用空白和"三"表示。

在图 3-10 所示的测试界面上按【★】键进行切换,状态标 示栏的相应位置处显示"三"或空白。开机默认为"一般测量方 式"。

3.4.1.3 测量步骤

1. 参数设置

操作方法参见 3.3.1.1 参数设置。

2. 复位

方法 1: 在参数设置界面(图 3-8)上,将传感器拿在空中, 远离铁磁体。选择"进入测试"选项,进入图 3-10 所示的测试 界面,仪器自动进行传感器复位操作一一约 4 秒钟后测试界面屏 幕提示当前厚度显示为"0",复位工作完成,进入测量等待状态。

方法 2: 在图 3-10 所示的测试界面时,将传感器拿在空中, 远离铁磁体,按【确认】键,仪器自动进行传感器复位操作,当 前厚度处显示空白,约 4 秒钟后测试界面屏幕提示当前厚度为"0", 复位工作完成,进入测量等待状态。

₩≥>注意:

- 1) 在检测过程中应每隔 10 分钟左右进行一次复位操作。
- 2) 对测量数据有怀疑时,也可进行复位后再次测量。

3. 确定钢筋位置走向及保护层厚度

图 3-12 普通测试界面

如图 3-11 所示,将探头放置于被测混凝土表面,与被测钢 筋平行,沿一个方向匀速移动传感器,当探头离钢筋越来越近时,

滚动条逐渐加长,信号值越来越大,当前厚度值减小(图 3-12(A)); 探头越过钢筋时自动锁定钢筋保护层厚度值(图 3-12(B))。如 存储方式设置为"自动存储",则仪器自动存储测量的保护层厚度 值,同时存储数自动加1;如存储方式设置为"手动存储",则当 仪器锁定保护层厚度后,按存储键,存储测量的保护层厚度值, 同时存储数自动加1。探头越过钢筋时蜂鸣器报警,提示已经找 到钢筋,且传感器已经越过该被测钢筋。

如果想精确判定钢筋位置及走向,按如下方法操作:

- 反方向移动探头,找到当前厚度值最小的位置,使当前 值与保护层厚度值一致,此时探头位置即为钢筋所在的 准确位置(图 3-12(C));
- 2) 旋转传感器,使得信号值最大,此时探头走向即为被测 钢筋走向(图 3-12(D))。

4. 测量钢筋直径

- 1) 依据方法二,进行传感器的复位操作;
- 2) 精确判定钢筋位置;
- 3) 将传感器放置在被测钢筋的正上方,并与被测钢筋平行; 按下【▲】键,约2秒钟后直径测量结果直接显示在"钢筋直径"的显示位置;仪器同时测量保护层厚度值,显示在"保护层"显示值位置上,如图3-13所示,自动存储模式下将自动保存直径值和保护层厚度,存储数加1。
 手动存储模式下此时若按下【存储】键则保存直径值和保护层厚度,存储数加1。

3.4.2 网格测试

网格测试功能主要是用网格示意图的方式,显示被测网状分 布钢筋的布筋情况,同时显示出每根被测钢筋的位置及保护层厚 度。

检查是否连接好了主机-传感器。然后,在图 3-7 钢筋主菜 单界面按【▲】、【→】键,将☑调至"网格测试"功能处,按【确 认】键进入扫描测试功能,出现图 3-14 所示的参数设置界面, 进行参数设置。

此时,系统先检测电池电量(请参阅"<mark>普通测试</mark>"中的电量 检测部分)。

3.4.2.1 参数设置

所有参数的缺省值为上一次所存储构件的设定值。设置方式 同 3.4.1.1 节对应的部分。同样是按【 ▲ 】、【 ★ 】键调整 ▲ 到要设 置的选项前面,按【确认】键选中该项,出现光标,按【 ▲ 】、【 ★ 】键 调整数据或切换项,最后按【存储】键保存该设置并退出此项。

图 3-14 网格测试参数设置

在参数设置界面按下【▲】、【→】键选中相应项后,其左侧 出现帮助菜单标志◀,此时若按下【◀】则可进入其对应的功能简 介界面进行快捷键及功能简介的查看,在功能简介界面按下【菜 单】键或【返回】键则可返回参数设置界面;

1. 预设直径 X——X 方向扫描的待测试钢筋的直径。设定范围为 6~50mm。

2. 预设直径 Y——Y 方向扫描的待测试钢筋的直径。设定范围为 6~50mm。

3. 设计厚度 X——X 方向待测试钢筋的设计保护层厚度,设 定范围为 10~99mm。

4. 设计厚度 Y——Y 方向待测试钢筋的设计保护层厚度,设 定范围为 10~99mm。

5. 数据修正——设置修正方式(该参数的定义参见 3.4.1.1)。 分为"自动"、"无"两种。开机默认为"无"。其中"自动"表示 仪器按其测量的保护层厚度和钢筋间距自动进行修正;重新进入 设置时默认值为上一次设置值。

在参数设置界面选择"进入测试",保存所设置的参数,同时 进入图 3-15 所示的测试界面。

32

注意:按【确认】键的同时,将传感器拿在空中,远离 铁磁体。

若在测试界面处按【返回】键,可返回到图 3-14 所示的参数界面,可重新进行参数设置。

3.4.2.2 测量及结果显示

图 3-15 所示界面的内容及定义如下:

1. 滚动条 提示当前传感器与钢筋的相对距离,滚动条 上的数字表示当前厚度,这一点与普通测试下数据含义略有不同。

空白 —— 传感器有效感应范围内无钢筋。

增长 —— 传感器正在向靠近钢筋的方向移动。

缩短 —— 传感器正在向远离钢筋的方向移动。

2. 当前厚度 —— 其定义详见 3.4.1.2。

3. 左上角坐标:

X、Y每屏可测长度为1米,超过1米翻页,对应该方向页 数加1。每屏中显示的钢筋位移是相对于该屏(1米)内的坐标,

以厘米为分度。如 x 方向扫到 2.6 米时发现一根钢筋,结果显示为: x02,钢筋上方坐标为 60(cm)。其显示方式与刻度尺同理。

4. 方向:表示传感器的扫描方向,"→"、"↓"分别代表 X 方向、Y 方向扫描。

5. 构件编号处显示已设定的构件编号;钢筋直径处显示已设定的当前方向的钢筋直径。

6. 状态信息处显示量程、存储方式、测量方式、修正方式等 内容。在网格测试状态中,可以使用按键进行量程及测量方式的 选择,其描述及热键功能请参见普通测试的相关内容。仅有以下 两点与普通测试的不同:

a) 网格扫描方式下只提供自动存储方式,即"A"。

b) "C"代表自动数据修正。

3.4.2.3 测量步骤

1. 参数设置

其参数定义及操作方法与"普通测试"相同。

2. 复位

方法 1: 在参数设置界面 (图 3-14 参数设置界面)上,将

35

传感器拿在空中,远离铁磁体。选择"进入测试",进入图 3-15 所示的测试界面,仪器自动进行传感器复位操作——约 4 秒钟 后测试界面屏幕提示当前厚度为"0",复位工作完成,进入测量 等待状态。

方法 2: 在图 3-15 所示的测试界面时将传感器拿在空中, 远离铁磁体,按【确认】键,传感器复位——约 4 秒钟后测试界 面右上角提示当前厚度为"0",复位完成,进入测量等待状态。

3. 预扫描

初次进入图 3-15 测量界面后,复位后,仪器可进行预扫描。

预扫描的目的就是通过初步扫描 X、Y 方向钢筋的大致分布, 确定 X、Y 方向扫描的测线方向及扫描的起点(扫描坐标的零点)。

仪器在图 3-15 所示的测量界面的状态下,可对被测钢筋的 位置进行测试。当传感器与被测钢筋的相对位置发生变化时,滚 动条上方显示当前厚度变化;当传感器越过被测钢筋上方时,仪 器发出短促的蜂鸣声,但界面上不画钢筋,也不存储被测钢筋的 测试数据。

如图 3-17 所示,首先在预定扫描起始的区域,通过上述方

法,测试 X 方向的 2~3 根钢筋的位置;然后测试 Y 方向的 2~3 根钢筋的位置。第一、二根 X、Y 方向钢筋交叉区域的中心(图 3-17 所示的"0"点),可作为扫描的起点。

4. 选择测试方向

在扫描测试之前,需要选择扫描测试的方向是 X 方向还是 Y 方向。

图 3-15 所示的界面下按【▲】键进行 X 方向、Y 方向切换, 右下角会出现对应的方向标记"→"或"↓",同时状态栏中的预 设直径也随着选择方向的改变而改变,参见图 3-18~图 3-21。

5. 网格扫描

若开始选择的是 X 方向,将传感器放置在预扫描时所确定的 坐标零点位置(图 3-17 中所示的起始点),与被测 Y 方向钢筋平 行。

按下【存储】键,原点处会出现一个方块型光标(以下简称 传感器光标),指示传感器的当前位移(该位移是相对于该页中坐标 点的相对位移)。此时可以开始对 X 方向扫描测试,见图 3-18。

匀速移动传感器,当传感器离钢筋越来越近时,滚动条逐渐加长,右上角的当前厚度值减小;当传感器越过钢筋时,蜂鸣提示,并在相应的坐标处显示测量的钢筋(用粗线表示,如图 3-18 所示),在钢筋的上方显示被测钢筋保护层厚度值和被测钢筋的坐标(钢筋距离测量起点的距离,单位:cm。),同时存储测试结果。

同样,传感器继续向前移动,仪器不断测试到被测钢筋,在 相应的坐标位置处,显示测试的钢筋及测试数据。

当扫描距离超过每屏显示的范围时,自动翻页测量,如图 3-19 所示。此时 X 坐标上自动加 1 代表已翻过一页。以此类推, 直至 X 方向测试完毕,按【存储】键结束存储状态,此时光标消失。

按【▲】键切换至另一方向。路径传感器自动清零,状态栏显示 Y 方向的预设直径和方向标记。仍然按【存储】键开始扫描, 这时会同时显示出 X 方向扫描出的第一屏数据。

Y方向的测试、翻屏测试均与X方向的操作相同。Y方向每次翻屏显示时都会同时显示X方向的第一屏数据,如图 3-21 所示。Y方向的钢筋用细线表示。再次按【存储】键结束扫描。

37

在测试过程中,当测试的保护层厚度超过规范要求(以设计厚度为基准,根据GB50204-2002计算出上、下限)的范围时,出现"!"符号提示,否则为空白。

如果不进行进"二次扫描"则按【返回】键回到参数设置界面,也可按【菜单】键返回至主菜单。

复测:在测试界面上,若发现某一测试数据有误,则将探头 沿原来测试方向的反向运动,回退到错误数据的钢筋前面,此时 回退范围内的已测数据及显示的钢筋图像全部清除,然后沿原测 试方向继续测试,即可进行复测操作,覆盖原有的测试结果。

《《《》注意:测量速度最好不要超过 40mm/秒。如果在密集 钢筋测量方式下,测量速度不能超过 15mm/秒。

6. 二次扫描

该功能是在网格扫描基础上通过对一个(或两个)测试方向 进行多条测线的扫描得出钢筋的真实分布。

具体操作:

38

第一步,如前所述完成预扫描,确定钢筋的大致走向及起始 点位置。

第二步,按本节第5条所述在X、Y方向上各完成一次扫描。 如果是先进行的X方向扫描,后进行的Y方向扫描,则完成后的 状态应该如图 3-22 所示。

第三步,重新选择一个方向,准备进行二次扫描。即按【▲】 键切换 X、Y 方向,本例中我们假定要进行 X 方向的扫描。

第四步,根据一次扫描(即第二步的X、Y两方向的扫描) 的钢筋位置,在Y方向测得的第二根和第三根钢筋的中间位置进 行第二次扫描(如图 3-25 中 b2 的测线),即按下【存储】键开始 测量,此时界面上出现了光标。二次扫描操作与一次扫描完全相 同,如图 3-23 所示。

₩ ~ 说明:

- 二次扫描仍显示一次扫描出的X、Y的钢筋分布界面, 但不会显示每根钢筋的坐标(位置及保护层厚度);
- 二次扫描中扫描到钢筋后只显示其坐标,不再画筋,如图 3-23 所示。

图 3-24 × 方向二次扫描翻屏显示 图 3-25 × 方向二次扫描 第五步,扫描距离超出一屏可显示的距离时,仪器自动翻到 第二屏,如图 3-24 所示,相应的,左上角的坐标原点自动加 1。

4()

用户可在此界面上继续进行扫描操作,不断的扫描-翻页-扫描, 扫描的最大距离不能超过第二步中在该方向进行一次扫描所测试 的最大距离。

第六步,如果 Y 方向上测试的第二根、第三根筋间扫描完毕 后按【存储】键结束此次扫描。

第七步,同理在 Y 方向测得的第三根和第四根钢筋的中间位 置进行二次扫描(如图 3-25 所示 b3 的测线),依次类推。

第八步,X方向的二次扫描全部完成后,按【▲】键切换至 另一方向,本例中应切换到Y方向。

第九步,Y方向的二次扫描原则与X方向的相同,依次进行 X方向上一次扫描出的第二根与第三根筋之间的二次扫描;第三 根与第四根筋之间的二次扫描...直至扫描第m-1根筋与第m根 筋之间的空档。这里的m是一次扫描中在该方向所扫到的最后一 根筋,如图 3-26 所示。

图 3-26 Y 方向二次扫描

Y 方向的二次扫描界面可参见图 3-27:图(a)是 Y 方向开始 扫描的状态;图(b)是 Y 方向翻屏扫描的状态。

修 注意:每一次测量的起点必须和一次扫描的起点在同一

水平线/垂直线上。

说明:图 3-25 中 X 方向扫描都是从最左边第一条线(细线示意)为起点向右扫描;图 3-26 Y 方向扫描都是从最上面第一条水平线(细线示意)为起点向下扫描。

上述操作完成后,将测量数据传输到计算机中,Windows 分析软件根据测量数据进行分析,并显示钢筋的实际分布状态, 如图 3-28 所示。

图 3-28 实际分布图

以上介绍的二次扫描方法是比较规范的操作方式,用户也可 以不用逐一的在相邻的两筋之间扫描,可以跨筋扫描。跨筋扫描 就是各 X、Y 方向上根据上述二次扫描的原则任选一条测线分别 进行二次扫描,但需要人工记录同方向上二次扫描与一次扫描两

根测线间的间距,以备 windows 软件分析之用。关于 windows 软件的使用,用户可参阅《钢筋数据处理软件使用手册》。

《《《》注意:在跨筋二次扫描选择测线时要尽量远离同方向一次扫描的测线!

跨筋扫描这种操作从严格意义上讲所呈现的实际分布图跟前 面所介绍的规范的二次扫描操作所得到的实际分布图会有一点差 异。建议用户尽量采用规范的二次扫描方式。

3.4.3 剖面测试

42

"剖面测试"是以断面分布图的方式,显示被测钢筋的位置 及保护层厚度的一种测试功能。

在图 3-7 钢筋检测主菜单界面按【▲】、【→】键,将☑调至 "剖面测试"功能处,按【确认】键进入剖面测试功能,出现图 3-29 所示的参数设置界面,进行参数设置。

图 3-29 剖面扫描参数设置界面

此时,系统先检测电池电量(详见 3.4.1 "普通测试"中的电量检测部分),并在仪器电池电量低的时候进行提示。

图 3-29 为参数设置界面,参数设置项及设置方式与普通测

试相同,但数据修正的设置与网格扫描相同,详细定义及操作见 3.4.1.1 和 3.4.2.1 节。

参数设置完毕后选择"进入测试"按【确认】以保存参数并 进入图 3-30 所示的界面。

注意:按【确认】键的同时,将传感器拿在空中,远离 铁磁体。

图 3-30 中间位置的水平实线表示设计厚度值,上下两条虚 线表示保护层厚度上限和下限值(上下限是根据用户设定的构件 类型(梁/板)及 GB50204-2002 计算而得的)。

当仪器显示的当前厚度值为0时,仪器复位操作完成,此时 可以进行预扫描(参见3.4.2.3节中的说明),也可以按【存储】 键,进入测试状态(左上角出现一个方块型传感器位置提示的光 标),测试时匀速移动传感器,当传感器离钢筋越来越近时,滚动 条逐渐加长,当前厚度值减小;当传感器越过钢筋时,蜂鸣提示, 并在相应的坐标处显示测量的钢筋(用黑色圆点表示,如图3-31 所示),在钢筋的上方显示被测钢筋保护层厚度值和被测钢筋的坐

标(钢筋距离测量起点的距离,单位 cm。);同时存储测试结果。

当传感器移动的距离超过屏幕显示的范围时(移动距 离>1.2m), 仪器自动翻屏, 左上角总页数加1。

测试完毕,按【返回】键保存测试数据,并返回到图 3-29 所示的参数设置界面。可重新进行参数设置、测试,也可按【菜 单】键进入仪器的主菜单界面。

说明:

- 剖面扫描功能中的复测、超标显示与网格扫描功能中 的定义及操作方式相同;
- 2) 剖面扫描中可以选择量程及测量方式,其定义及操作 方法参见 3.4.1.1;
- 剖面扫描中每屏可以显示的距离是 1.2m,网格下是 1.0m。

3.4.4 数据显示

本功能主要用于显示已存储的构件及其数据或图像。

构件		数据
AB01C1	预设直径	12
3C5675	数据个数	20
0086C	合格率	90%
384C6C	最大值	46
3CHL61	最小值	42
	平均值	44
	直径最大值	46
	直径最小值	42
	直径平均值	44

图 3-32 数据显示界面

在图 3-7 所示的主菜单界面上,按【▲】、【→】键,将赵调

45

至"数据显示"前面,按【确认】进入图 3-32 所示的数据显示 界面,左侧为构件列表区,按照存储的先后倒序排列,即:最后 存储的构件最先显示。右侧为数据显示区,可显示当前构件中存 储数据的统计数据、原始测量数据或图形。

在该界面中按【菜单】键,可退回到主菜单界面。

在图 3-32 界面上按【▲】、【★】键,可以移动光标至需要查 看的构件下,右侧则显示出对应于该构件的统计数据。

按【确认】键进入数据查看状态,显示所选择构件的已存储 的测试数据,分为以下三种:

3.4.4.1 普通测试的数据查看

对于用普通测试的模式进行检测的构件,会出现图 3-32 所示的界面,显示该构件测试时的预设直径、存储的数据个数、测试数据中的最大/最小值、平均值等。按【确认】键进入图 3-33 所示的界面,显示存储的数据。

数据				
No	Ť	Dia	\triangle	Sx
1	22	16	-2	
2	25	18	-1	
3	30			*
4	20	17	-1	
5	16			*
6	22			
7	24			
	No 1 2 3 4 5 6 7	No T 1 22 2 25 3 30 4 20 5 16 6 22 7 24	数据 No T Dia 1 22 16 2 25 18 3 30 - 4 20 17 5 16 - 6 22 - 7 24 -	No T Dia △ 1 22 16 -2 2 25 18 -1 3 30 - - 4 20 17 -1 5 16 - - 6 22 - - 7 24 - -

图 3-33 普通数据查看

图中各项含义如下:

NO.—序号;

Dia—所测的直径值,此项没有数据代表没有进行直径测试;

T--保护层厚度值,如果后面 Dia 中有测量的直径值,则此时的 T 是用"测量直径"功能测出的厚度;

 Δ —测量直径与预设直径的差;

Sx—所测的保护层厚度是否超标,如果超标用"*",反之空白。

如果存储的数据个数超过一屏则按【▲】、【→】键翻页查看 (向上最多翻页显示到统计数据界面),在本界面上按【返回】键, 则可退回到图 3-32 界面。

3.4.4.2 网格数据查看

46

在图 3-34(a)所示的界面上按【确认】键,进入图 3-34 (b)所示界面,显示网格扫描的钢筋分布图。则按【▲】、【→】、 【▲】、【▶】翻屏查看。

在数据显示过程中的任何一个界面,按【返回】键均可退回 到图 3-34(a)的界面,按【菜单】键返回至主菜单。

3.4.4.3 剖面数据查看

在图 3-35(a)所示的界面上按【确认】键,进入图 3-35 (b)所示的剖面数据查看界面。可按【◀】、【▶】翻屏查看。与网 格显示不同的是,剖面方式下显示的仅是一个方向的数据。

构件		数据		$X00 \ \underline{25} \ \underline{31} \ \underline{38} \ \underline{25} \ \underline{32} \ \underline{32}$	П
AB01C1		X	Y	11, 32, 55, 73, 84, 109	սհահո
3C3675 0086C0	预设直径	12	-		սհահա
384C6C	数据个数	20	-		վադես
3CHL61	合格率	90%	-	30	ılımlır
	最大值	46	-		սհահ
	最小值	42	-		որոր
	平均值	44	-	!	mlm

	(a)		(b)	

图 3-35 剖面数据查看

3.4.5 钢筋数据删除

删除已存储的所有数据。

在图 3-7 所示的钢筋主菜单界面上,按【▲】、【→】键,将☑ 调至数据删除前面,然后执行以下操作:

1) 按【确认】键,进入数据删除界面,如图 3-36 所示。

9 ₁	数据删除?
8	

图 3-36 数据删除

2) 再按【确认】键,开始数据删除操作,屏幕显示"正在删除…",约4秒钟后删除完成,自动返回菜单界面;
 在图3-36数据删除界面若不进行数据删除操作可直接按【返回】键返回主菜单。

《《《》注意: 该项功能将删除全部数据且无法恢复, 删除数据 前必须确保数据已传输至计算机。

3.4.6 现场测试

3.4.6.1 参数设置

- 在主菜单界面选择测试方法后按【确认】进入参数设置 界面;
- 2) 设置预设直径;
- 3) 设置最小厚度为 0;
- 4) 设置构件编号(可选);
- 5) 将传感器拿在空中不动并远离铁磁体;
- 6) 按【返回】键进入测量界面;
- 7) 约3秒钟后当前厚度显示0,复位完成,进入测量状态
 注意:在当前厚度值显示0之前让传感器远离钢筋及其
 它铁磁体! 在测量过程中应每隔10分钟左右进行一次复位操作。

3.4.6.2 定位钢筋

一般应首先定位上层钢筋(或箍筋),然后在两条上层钢筋(或 箍筋)中间测量来定位下层钢筋(或主筋),如图 3-37 所示。

<u> 1</u>8

49

在混凝土表面沿一个方向匀速移动传感器,注意观察滚动条、 当前厚度值、保护层值和蜂鸣器声音。通过下列几种方法中的任 何一种都可以判定钢筋位置。

1. 蜂鸣器发出鸣叫声。

此时仪器提示传感器越过一条钢筋,然后向<u>相反方向移动传</u> 感器,找到当前厚度值最小的位置,即是钢筋的准确位置。

2. 信号值由小逐渐变大,然后又变小。

传感器逐渐接近钢筋时,信号值逐渐变大,反之,信号值变 小,找到该值最大的位置,即是钢筋的准确位置。

信号值是测量保护层厚度的基本依据。因为在保护层厚度变化 1mm 范围之内时,当前厚度值不会发生变化,而信号值可以反映更微小的变化;所以根据该值可以更精确地确定钢筋位置。

3. 当前厚度值由大逐渐变小,然后又变大。

传感器逐渐接近钢筋时,当前厚度值逐渐变小,反之,当前 厚度值变大,找到该值最小的位置,即是钢筋的准确位置。

4. 滚动条逐渐增长,然后又缩短。

传感器逐渐接近钢筋时,滚动条逐渐增长,反之,滚动条逐 渐缩短,找到滚动条最长的位置,即是钢筋的准确位置。

3.4.6.3 定向钢筋

可以采取下列两种方法来确定钢筋走向:

- 确定钢筋位置后,在钢筋正上方左、右旋转传感器,当 前厚度值及屏幕左上角信号值相应有所变化,当信号值 最大、当前厚度值最小时,此时传感器与钢筋平行,传 感器走向即为混凝土内部被测钢筋的走向。
- 在相互平行的两条测量线上分别测量钢筋位置,两个位置点的连线即是钢筋走向。

3.4.6.4 测量保护层厚度

1. 自动判读

传感器平行于钢筋走向,并沿与钢筋走向垂直的方向匀速扫 过钢筋正上方,仪器发出一声鸣叫,提示传感器越过一条钢筋, 此时"保护层"显示值自动更新为该处的混凝土保护层厚度值。

该方法适用于钢筋间距大于表 3.1 中描述的情况。

表 3.1

被测钢筋位于上层			被测钢筋位于下层		
保护层 厚度	平行钢 筋间距 a1	垂直钢 筋间距 b1	保护层 厚度	平行钢 筋间距 a2	垂直钢 筋间距 b2
15	70	80	15	70	90
30	80	100	30	80	110
45	100	120	45	100	130
60	120	140	60	120	150

表 3.1 中的钢筋间距 a1、b1、a2、b2 如图 3-38 所示。

2. 人工判读

该方法适用于钢筋间距小于表 3.1 中描述的情况。

当现场环境复杂、自动判读困难时,可依据当前厚度及信号 值的变化情况来判定保护层厚度值:当该值有两个以上连续下降 然后又有两个以上连续上升的时候,可以判定该处有一条钢筋, 混凝土保护层厚度值即是上述过程中的最小值。例如:当前厚度 显示值变化如下时即可判定一条钢筋,63-62-61-62-63;保护

层厚度值为61。

3. 存储保护层厚度测量值

仪器自动测量的保护层厚度值可以按照构件编号分组保存下 来。最多可以存储 992 个构件编号,每个构件编号中最多存储 999 个保护层厚度值。每个编号中同时存储测量时设置的直径预设值, 该直径预设值为第一个保护层厚度值测量时使用的值,

《 注意:如果用户在存储数目大于 0 时改变预设直径值, 仪器不予存储。即对于已存储的构件,将无法修改其预设直径。

3.4.6.5 特殊情况下的保护层厚度测量

1. 密集钢筋测量

用户可以针对被测构件的情况选择不同的测量方式:

- 构件中钢筋间距较大,如板类构件,宜采用一般测量方 式;
- 构件中钢筋间距较小,如梁类构件,宜采用密集钢筋测 量方式。ZBL-R800针对密集钢筋构件设计了专用测量 方式。

在梁类或有些柱类构件中,往往存在钢筋密集排列的情况, 有时钢筋净间距在 1.5 倍钢筋直径左右。在这种布筋情况下,扫 描过程中保护层厚度值变化很小,一般钢筋测量仪器都很难准确 的判定钢筋数目和钢筋位置。

此时,建议用户使用"密集钢筋测量方式"进行测量。 在普通测试界面下,按【**▼**】键,仪器在一般测量方式和密

集钢筋测量方式切换。当处于密集钢筋测量方式时,状态栏中出现"三"标志。

在密集钢筋测量方式下,钢筋定位和保护层厚度的测量、存 储方法与不加密相同。

《 采用密集钢筋测量方式应注意以下几点:

- 1) 扫描速度不应过快,宜小于 15mm/秒。
- <u>扫描过程一定要保持单向移动传感器,并保证传感器与</u> 被测钢筋平行。
- 3) 尽量选择交叉筋间距较大的位置进行测量。
- 在第一次扫描过程完成后,建议在相反方向进行一次验 证扫描,以提高可靠性。

《《》 注意:在钢筋净间距小于 1.5 倍钢筋直径,而且保护层 厚度大于 2 倍间距的情况下,容易出现最后一根钢筋无法自动判 读的情况(该种情况在一般混凝土结构中较少见)。对该种情况一般应采用下述方法进行测量:

- 1) 定位箍筋。
- 2) 在间距较大的箍筋中间,确定一条扫描线。
- 3) 选择一个方向进行扫描测量,并标记钢筋位置。
- 4) 在相反方向进行第二次扫描,并标记钢筋位置。
- 5) 如果两次扫描结果相吻合,测量过程结束。
- 6) 否则重复3、4步测量。如果两组测量过程都符合以下 特征:第一次扫描可以确定A、B、C 三根钢筋,相反 方向扫描可以确定D、C、B 三根钢筋。那么基本可以 确定该构件有4根钢筋。

53

2. 最小保护层厚度测量

该功能主要应用于下列场合:

1)模板拆除后检查钢筋是否撑出。

2)快速检查保护层厚度是否满足最小设计值。
 操作步骤:

- 1) 设置预设直径值为被测钢筋直径;
- 2) 设置需要报警的最小保护层厚度值;
- 扫描被测物,当保护层厚度小于设定值时,蜂鸣器会自动报警。
- 在该测量方式下,用户可以用较快的速度进行扫描而不
 用注意屏幕显示。

3.4.6.6 钢筋直径测量

首先准确定位钢筋,然后确定钢筋的准确走向,此时将传感 器置于被测钢筋正上方,按下【▲】键,屏幕显示"钢筋直径" 字样,稍等片刻直径测量结果直接显示在屏幕上,同时将测得的 保护层厚度值,显示在"保护层"显示值位置上,该值前有一"▶" 标志,以区别于依据预设直径值测量的保护层厚度值。如果保护

层厚度小于表 3.2 中相应的最小值, 仪器显示"厚度太小", 如果 保护层厚度大于表 3.2 中相应的最大值, 仪器显示"厚度太大", 此时无法测量钢筋直径。

表 3.2 钢筋直径测试范围 单位: mm

钢筋直径	最小厚度	最大厚度
Φ6	4(10)	55(59)
Φ8	4(10)	60(64)
Φ10	6(12)	62(66)
Φ12	8(14)	64(68)
Φ14	10(16)	66(70)
Φ16	10(16)	68(72)
Φ18	12(18)	68(72)
Φ20	12(18)	70(74)
Φ22	14(20)	72(76)
Φ25	14(20)	74(78)
Φ28	16(22)	76(80)
Ф32	16(22)	77(81)
Φ36	16(22)	78(82)
Φ40	20(26)	80(84)
Φ50	22(28)	84(88)

*峰*令注意:表 3.2 中的最小厚度、最大厚度栏,前面为大探 头指标,括号中的为小探头指标。

测量时如遇到保护层厚度太小的情况,建议在传感器底部垫 一块有机玻璃(或其它非金属材料), 将测量值减去垫块厚度即为 实测保护层厚度。

3.5 钢筋锈蚀测试

3.5.1 锈蚀测试主菜单

在仪器主界面中按【▲】、【↓】、【↓】选择"锈蚀测试"后, 按下【确认】键就进入到锈蚀测试主菜单界面如图 3-40。

图 3-40 锈蚀主菜单

在锈蚀主菜单界面,可以设置测量参数(构件编号、检测方 法等),还可进行数据显示、删除等操作。菜单操作的统一原则是:

- 1) 按【▲】、【★】键选择不同的菜单选项;
- 2) 按【确认】键进入当前选项;
- 3) 按【菜单】键返回菜单选择状态;
- 4) 按【返回】键返回前一状态;
- 5) 按【存储】键保存参数设置;
- 6) 按【◀】键查看功能简介;

3.5.2 参数设置

3.5.2.1 构件编号

构件编号应与被测构件建立一一对应关系。每个构件编号中

最多存储 13 行×18 列,共 234 个测点的电位值。

构件编号具有自动增加功能,一个测区测量结束,返回菜单 界面时,构件编号自动加1。

需要手动改变构件编号时,调整"构件编号"菜单项为当前 选项,然后按以下步骤操作:

- 按【确认】键进入构件编号调整状态,此时数据编号末 位数字下出现选择光标。
- 2) 按【▲】、【→】键调整该位数字,按【4】、【>】键选择 其它数据位;

该编号调整具有进位和退位功能,最大值为 999。

- 按【菜单】键返回菜单选择状态,继续进行其它菜单操 作;
- 4) 按【返回】键返回前一状态。

3.5.2.2 检测方法

锈蚀测试分为单极性检测和双极性检测两种方式。

在锈蚀主菜单中按【▲】、【★】键移动光标到"<mark>检测方法</mark>" 选项,按【确认】键进入检测方法选择菜单如图 3-41,"**型**"停

57

留在当前检测方式上以供参考。用【▲】、【→】键选择检测方式, 按【确认】或【存储】键选中相应检测方式并退出检测方法选择, 按【返回】键放弃选择回到锈蚀主菜单界面。

3.5.2.3 图标设置

在锈蚀主菜单中按【▲】、【→】键移动光标到"图标设置" 选项,按【确认】键进入图标设置选择菜单如图 3-42,在图标设 置中,不同的图例代表不同的电位值,图例黑色面积越小,表示 电位值越小,反之,表示电位值越大。用户根据测区内图例的分 布情况可以轻松判断钢筋锈蚀发生的可能性大小。

按【◀】、【▶】键或者【确认】键移动光标在最大值和最小值 之间切换,按【▲】、【◀】键以 10mV 步距增减光标所在值。当 最大和最小值调整时,左侧不同图例代表的电压范围也在同步更 新。按【返回】或【菜单】键返回上一级菜单。

3.5.2.4 测区设置

在锈蚀主菜单中按【▲】、【→】键移动光标到"测区设置" 选项,按【确认】键进入测区设置选择菜单如图 3-43。其中"× 向点距"和"Y向点距"设置 X 方向和 Y 方向上的测点点距,"× 测点数"和"Y 测点数"设置 X 方向和 Y 方向上测点的数目。测 点点距和测点数目共同决定了测区的大小,用户根据构件情况, 按照一定间距布置测点,一般情况下两个值应一致。具体的调整 步骤如下:

1) 按【▲】、【★】键选择需要调整的项;

2) 按【确认】键进入该项的编辑调整状态;

58

- 3) 按【▲】、【▼】键调整该位数字值;
- 按【存储】或【确认】键,设定当前值并退出编辑调整 状态;
- 5) 按【菜单】键返回菜单选择状态,继续进行其它菜单操 作;
- 6) 按【返回】键返回前一状态。

图 3-43 锈蚀测区设置

其中单极性 X 向点距和 Y 向点距都是 1~100 (cm), 双极 性中 X 向点距固定为 20cm, Y 向点距为 1~100cm, 单极性和 双极性测点的 X 轴上范围为: 1~18, Y 轴上范围为 1~13。

3.5.3 测量界面

在锈蚀主菜单中按【▲】、【→】键移动光标到"进入测试" 选项,按【确认】键进入测量界面(如图 3-44 所示)。测量界面 由结果显示区和参数区构成。屏幕上部为结果显示区,以图例方 式显示每个测点的测量结果,不同的图例代表不同电位,用户可 以在"图标设置"菜单下进行设置,操作请参照 3.5.2.3 节。下部 为参数区,分别显示当前坐标、构件编号、当前测试电位和测试

方向等信息。

3.5.4 数据显示

在锈蚀主菜单界面,按【▲】、【→】键移动光标到"数据显 示"选项,按【确认】键进入数据显示界面。屏幕左侧显示已测 构件编号列表,右侧显示该编号对应测试数据的统计结果,如图 3-45 所示。构件编号按照倒序方式显示,即最后测试的构件最先 显示。

编号	数据显示		
003 002 001 000	检测方法 数据个数 河均值 > 150mV > 100mV < 100mV < 100mV	双电极 2 X 20 Y 20 0.8 0% 0% 100%	

图 3-45 锈蚀数据显示

统计内容包括:

1) 检测方式——此次数据检测所使用的检测方式。

- 2) 数据个数——构件编号内存储的测点数量。
- 3) 测点距离——该构件 X 向、Y 向测点的间距。
- 4) 平均值 ——该构件内所有测点电位的平均值。
- 5) 锈蚀统计——统计该构件的相对锈蚀情况。本统计依据《建筑结构检测技术标准》《GB/T50344-2004》 以及冶金研究院 YBJ222-90 标准做出统计,具体规定请参照附录。

按【▲】、【→】键移动光标,选择不同的构件编号,右侧的 统计结果同时刷新。按【确认】键以图标方式显示该构件内的详 细测试数据,此时按【▲】、【→】、【〈】、【〉】键移动光标,在右下 角位置会显示当前光标处的电位值。按【返回】键,返回上一级 数据显示界面;在数据显示界面按【菜单】或【返回】键返回菜 单界面。

3.5.5 数据删除

图 3-46 数据删除

在锈蚀主菜单界面,按【▲】、【★】键移动光标到"数据删

62

除"选项,按【确定】键进入数据删除确认界面,如图 3-46(A)。 此时仪器需要用户确认是否确定要进行数据删除操作,按【确定】 键开始数据删除,如图 3-46(B),数据删除完成后自动返回菜单界 面。图 3-46(A)中,若按【返回】键,则取消数据删除操作,返 回菜单界面;

《《》》建议:由于数据删除后不可恢复,因此建议用户确定机 内数据已全部传输到计算机后,再进行数据删除操作。

第4章 快速操作指南

4.1 钢筋测试

4.1.1 现场准备

测试开始前应该对被检测构件做处理,构件表面的凹凸不平 会影响检测的结果。应尽量使检测的构件表面平整,有利于传感 器在构件表面上的滑动。

4.1.2 连接主机-传感器

将信号线一端插头(黑色)的缺口与主机左侧相应插座的缺口对齐插入,并<u>顺时针旋转、锁紧</u>,然后将信号线另一端的插头按同样的方式插入传感器插座并锁紧。(见图 4-1 连接示意)。

图 4-1 钢筋传感器连接主机

图 4-2 钢筋传感器连接

峰 注意:信号线无方向差别。(如图 4-2 连接示意图)

4.1.3 开始测试

按下【 ④】键,主机上电开始工作。启动完成后,自动进入 菜单界面,选择钢筋测试进行数据的采集。具体操作参照 3.4 节。

4.1.4 数据传输

现场测试完成后,将仪器内部的检测数据传输到 U 盘以便进 一步分析,具体操作请参照 3.2 节。

4.1.5 数据分析处理

随机配套的钢筋检测数据处理软件提供了更多高级的数据分 析功能,同时可以自动生成检测报告。有关操作请参考《钢筋检 测数据处理软件使用说明书》中的相关内容。

4.1.6 数据删除

64

在分析完所有数据,并确认没有问题之后,即可将仪器内部的数据删除掉,在"钢筋测试"菜单选项中按【▲】、【→】选择"数

据删除"选项,按【确认】键进入数据删除界面,再次按【确认】 键则删除所有数据。详细操作见 3.4.5 节。

4.2 锈蚀测试

4.2.1 测试前准备

4.2.1.1 锈蚀电极准备

1. 配液

电极出厂时,两端都有橡胶套(如图 4-3a 所示)。底部的橡 胶套是用于保护管体,上部橡胶套用于保护电极,Q9 插座用于连 接信号线,将上部橡胶套及 Q9 插座拧下即可灌入硫酸铜溶液。

使用时,先取掉底部的橡胶套,然后,再先将上部橡胶套(Q9 头的一端)取下:双手分别握住硫酸铜电极上部橡胶套和有机玻 璃管,顺时针旋转橡胶套,将电极上部和有机玻璃管分开,将约 20克硫酸铜灌入有机玻璃管中;然后向有机玻璃管中倒入约4/5 蒸馏水,将电极上部装入有机玻璃管中;适当摇晃电极,使硫酸 铜溶液达到饱和状态,且有少量硫酸铜颗粒存在。

2. 安装电极下托

请先将海绵条用蒸馏水浸湿,完全变软后,拧到电极的底端, 同时注意让海绵条与底部白色的陶瓷片接触良好。安装好的电极 如图 4-3b 所示。

《 注意: 该电极配一次液体后可持续使用, 直至所剩液体 不足可重新配液或补充。

4.2.1.2 确定测区。

测区宜选择结构混凝土有钢筋锈蚀迹象或可能发生钢筋锈蚀 的区域,面积不宜大于5m×5m。

4.2.1.3 布置测点

66

- 在待测构件表面布置测线,X向测线和Y向测线构成正 方形的网格,测线的交点即为测点,如图 4-4、4-5 所 示。单电极检测测点间距一般设置为 10cm~50cm,双 电极检测的测点间距是固定的为 20cm;每个测区宜布 置 30~50 个测点,测点距构件边缘距离应大于 4cm。
- 2) 请参照 4.3 节现场注意事项中的说明对测区做相应处理。

4.2.1.4 连接线缆

如果使用单电极方式检测,需要用单电极信号线将单支硫酸 铜电极连接到仪器的锈蚀传感器接口,然后在合适的位置凿开混 凝土使其露出钢筋,钢筋表面应除锈或清除污物,以保证导线与 钢筋有效连接。用接地线的电夹把钢筋夹好。如图 4-6 所示。

67

如果使用双电极方式检测,先将两个硫酸铜电极安装在双电 极支架上,然后用双电极信号线将两个电极连接到仪器的锈蚀传 感器接口。如图 4-7 所示。

4.2.2 开始检测

- 打开仪器,分别进入"锈蚀测试"的"检测方法"、"图标设置"、"测区设置"菜单,选择好检测方式和图标, 设置编号、测点间距、测点数目等信息后选择"进入测试"进入测试界面。
- 2) 根据需要,按下【确认】键可切换测试方向。
- 将电极放置在测点上,观察电位值显示,当该值稳定后, 按【存储】键存储该点电位值,且光标自动按测试方向 进入下一个测量位置。
- 4) 重复第3步操作,直到该行(列)测点测试结束。
- 5) 按方向键调整光标到下一个测点的显示位置,重复3、4 步操作。
- 6) 重复3、4、5步操作,直到整个测区测试结束。

检测结束后,把电极下托拧下来单独放到仪器箱体内,然后 用干净的布将电极底部的陶瓷片擦干净,晾干。最后套上底部的 黑色橡胶套,放入箱内待下次使用。下托中的海绵用清水洗干净 直接放入仪器箱内。

4.2.3 数据查看

具体操作请参照 3.5.4 节。

68

4.2.4 数据传输

现场测试完成后,将仪器内部的检测数据传输到 U 盘以便进 一步分析,具体操作请参照 3.2 节。

4.2.5 数据分析

随机配套的钢筋锈蚀检测数据处理软件提供了更多高级的数 据分析功能,同时可以自动生成检测报告。有关操作请参考《钢 筋锈蚀检测数据处理软件使用说明书》中的相关内容。

4.2.6 数据删除

在分析完所有数据,并确认没有问题之后,即可将仪器内部 的数据删除掉,在"锈蚀测试"菜单选项中按【▲】、【→】选择"数 据删除"选项,按【确认】键进入数据删除界面,再次按【确认】 键则删除所有数据。详细操作见 3.5.5 节。

4.3 现场检测时的注意事项

4.3.1 钢筋测量的一般原则

- 扫描面应比较平整,无较高的突起物。如果表面过于粗 糙而无法清理时,可以在扫描面上放置一块薄板,在测 量结果中将薄板的厚度减掉。
- 2) 扫描过程中尽量使传感器保持单向匀速移动。
- 3) 扫描方向应垂直于钢筋走向(如图 4-9),否则可能会造

成误判 (如图 4-8)。

4.3.2 锈蚀检测注意事项

测点处混凝土表面应平整、清洁。必要时用砂轮或钢丝刷打 磨,并将粉尘等杂物清除。

测区混凝土应预先充分浸湿,以减小通路的电阻,但测试时 表面不得有液态水存在。可在饮用水中加入适量(约2%)家用液 态洗涤剂配制成导电溶液,浸润效果更佳。

电话: 010-51290405 传真: 010-51290406 网址: http://www.zbl.cn 版本: Ver2.0-20161028

